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GROUP THEORY

UNIT-1 GROUPS
B. SRINIVASARAO. LECTURER IN MATHS. GDC. RVPM.KONASEEMA

UNIT - 1: Syllabus

Binary Operation — Algebraic structure — semi group-monoid — Group definition and
elementary properties Finite and Infinite groups — examples — order of a group. Compositiontables

with examples.
Sets Relations

Definition (Set): A set is a collection of well-defined objects.
Examples:1 A=4{1,2,3,4,5,6,7,} B={ab,c,d}aresets

Example:2 Collection of Mathematics books in the college library.

Example:3 Collection of those students in your college who secured more than 80% of marks
in Annual examination.

Number system: The following sets are defined as:

1.The set of Natural numbers are defined by N = {1,2,34, ... ........,n,n+ 1, ..... }

2.The set of Integers are defined by Z ={... ............— 3,—2,-1,0,1,2,3, ... ... ... ... }

3.The set of rational numbers are defined by Q = { g:p, q €Z,q+0}

4.The set of Irrational numbers are R - Q = {v2,v/3,V5, .....7, ...}

5.The set of Real numbers are the union of set of Rationales and the set of Irrationals.
ie, R=QU(R-Q)

6.The set of complex numbers are definedby C = {x +iy:x,y €R,i=v—-1}
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Real number system

Non-Empty set: A set A has at least one or more than one element is called a non-emptyset
and is denoted by z.

Binary operation: An operation 0 is said to be binary on a non-empty set G if
foralla,be GthenaObeG.
Example: Addition (+) is a binary operation on set of Naturals N but Subtraction (-) is not a binary

operation on N.

Sincefora=5,b=9€Nthena+b=5+9 =14eNbuta- b=5-9 = -4¢N

Algebraic Structure: -

A non-empty set together with one or more than one binary operation is called analgebraic
structure.

Examples: -

1.(R, +, X ) . is an Algebraic Structure where R is set of Real Numbers.

2.(N, +), (Z, +), (Q, +) are algebraic structures but (N, -) (Z, +) are not an algebraic structures

Example: Division (=) is nota binary operation on Z

Since fora =2,b=3€Zbut2 +3= g ¢ Z. Therefore < Z, + > is not an Algebraic structure.

Therefore < Z, + > is not an Algebraic Structure.

Example: Multiplication is a Binary operation on the set or Rational numbers Q

2 5, 25 10
Fora—g b—;mchena.b—g.; =

€Q

Therefore < Q, x >is an Algebraic Structure
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Example: Division is a Binary operation on the set or Rational numbers Q Since
fora = 7/9,b = 8/9thena ~ b = 7/9 ~8/9 = 7/9 x 9/8 = 7/8 € Q

Therefore < Q, + > is an Algebraic Structure.
Definition (Group): A non-empty set G is said to be a Group w r t a Binary operation O if it
satisfiesthe following properties
1.Closure Property : Va,beG= aobEG.
2.Associative Property : ao(bo c)=(aob)oc VYa,b,ceG
3 ldentity Properties - For all a € G there exist an element e € G such that
aoe=eoa=a
“e‘ is called identity w r t the operation o
4.Inverse Property : For all a €G there exist an element b € G such that
a0b=e=Db0a
then b is the inverse element of a w r t operation 0
Note:1. In an additive Group the Identity is o (zero) and the multiplicative Identity is 1 (one)
Note :2. In the Additive Group G the Inverse element of a is - a and in the Multiplicative

group G the inverse element of a is a™!

Example: The setofintegers Z={......... -3,-2,-1,0,1,2,3, ... ......... } form a group
with respect to addition (+) .

Solution: Giventhat Z={......... —-3,-2,-1,0,1,2,3, e cev e o }
1.Closure Property:

Clearly the addition of any two integers is also an integer therefore closure law exists.

Thatisfora=5 b=-8 inZ thena+b=5+(-8) =-3€ Z
2.Associative property:

Foranya,b,c € Zthena+ (b+c)=(a+b)+c
3.1dentity Property:

Forall a € Z there exist 0 € Z suchthata+0=a=04+a

and 0 is the additive identity in Z.
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4.Inverse Property:
Forall a € Z there exist —a € Z suchthata + (—a) = 0 = (—a) +a
And —a is the additive Inverse of a inZ.
Groupoid:

A non — empty set G is said to be Groupoid wrt to given binary operation o if it satisfies

Closure law i.e forall a,b € G = a0b € G
Example: Z={...... -3,-2,-1,0,1,2,3,...... }is a Groupoid w r t — ( Subtraction).

Semi-Group:

A non — empty set G is said to be a semi-group wrt to given Binary operation o if it satisfies 1
Closure 2. Associative laws.

Example:
The set of Natural numbers N = {1,2,34, ... ........,n,n + 1, ..... }is a semi group wrt

addition. Since Identity o is not in N.

Monoid:

A non —empty set G is said to be a Monoid wrt to given Binary operation o if it satisfies1.

Closure 2. Associative and 3. Identity laws.

Example: N ={1,2,3,4, ... ... .....,n, ..... } isa Monoid wrt Multiplication.

Since Inverse property is not existed in N. for a=3then a1 :§ is notin N.

Note: The stanard Groups in the Number systemare< Z, +>,< Q, + >, <Q -{0}, x>
<R, +> <R-{0}, x> <C,+>and,<(C-{0}, x >
Abelian Group:
A Group G is said to be Abelianw r t 0 if it satisfies commutative property that is
foralla,binGthen aob = b0a
Theorem: 1 - (Uniqueness of identity) Prove that every group has unique Identity.
Proof: If possible, suppose that e and e’ are two identity elements in a group G.

Case-1: Let e = Identity and e’ =element

«

e‘e=e' =ee’' ———(1) (Sinceae = a = ea)
Lete‘ = Identity and e = Element
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Hence the Identity element is unique
Theorem: 2 (Uniqueness of inverse)
Prove that the inverse of each element of a group is unique.

Proof: Forall a € G to show that it has unique inverse.

Suppose b, ¢ are two inverse elements of a in G
If bisinverseof a weget ab = e = ba ----(1)
=e=ca ----(2)

If cisinverse of a we get ac

To show thatb = ¢

Asb = eb(~ eistheldentity)
= ca)

= (ca) b(~ from (2)e
c(ab) + Associate property in G

c(e) v from(1)
: Therefore,inverse element is unique.

=c~ b =c.

Theorem:3 (Cancellation laws)

For any a # 0, b, c in a group G. Prove that
( Left cancellation)

11f ab=ac >b=c

21f ba=ca =b=c (Right cancellation)

Proof: Letab=ac
= al(@b)=al(ac) (since a € G by inverselawa™! € G)

= (a la)b=(a"1a)c
= (e)b=(e)c

since e is the identity

( by Associative inG)
( by Inverse property in G)

=>b=c
Also, if ba=ca
= (ba)al = (ca)a® (sincea € Gbyinverse lawa? e G)

=> b(aal) =c(aal) ( by Associative in G)
= be = ce ( by Inverse property in G)

=>b=c
Hence cancellation laws hold in a group G
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Theorem:4 (Reversion rule) :

InaGroup G, Provethat (ab) *=bta ' foralla binG.
Proof: Letc=b ta L forallabinG

Consider ¢ (ab) = b a (ab)

=b1(ata)b ( By Associative in G)
=bl(e)b ( By Inverse property in G)
=b'h ( Since e is the identity )
=e

~c(ab) =e - 1)
Also (ab)c = (ab) bt a?

=a(bb?)a? ( By Associative in G )

=a(e)a? ( By Inverse property in G)

=aal (Since e is the identity)

=e

(ab)c=e - (2)

from (1) and (2)
~ c(ab) = e = (ab)c = ¢ = (ab)? (~ ab=e=ba =>b=al)

Hence (ab) *=b ta*
Theorem:5 Let G be agroup and a € G then prove that (a™)™*=a.

Proof: - By the definition of the group G.

Foralla € G by Inverse property in G 3 a* in G such that

aal=e=ala

Letb=a € G by inverse property in G 3 anelement b 1€ G such that

bb™l=e=b"1b Butb=qa

f(@) (@D t=e= @H @)
From (1) & (2) aa'= (a1 "(a D)

Apply Right cancellation to a1 We get (a 1) 1=a.
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Theorem: If G isa group and a, b € G then the equations ax = b ans ya = b have unique
solutions in G.

Proof: Asax=b> a (ax) =a1b (fora€G = al€eG)
= (ala)x = a’b (by Associative in G)
>ex=alb
= x=alb

Now LHS=ax =a(a 'h) = (aa )b =eb =bRHS

It follows x = a='b s the solution of ax = b

To show that x = a~b is the unique solution of ax = b

Suppose x; and x, are two such solutions of ax = b

~ax;=b and ax,=Db
= ax;, = ax, and by left cancellation laws x; = x,
Hence x = a~1b is the unique solution of ax = b
Similarly, to prove that ya = b has y = ba™1 is the unique solution.

Theorem: If G is a Semigroup and a,b € G the equations ax = b and ya = b have

solutions in G then prove that G is group.

Proof: Assume that G is a Semigroup

Leta € G = a,a € G ax = a hasasolution and ae = a forsomee € G

Let a,b € G ya = b has asolution and ela = b for some el € G
Now be = (e'a)e = e'(ae) =e'a=b
~ e is the right identity in G Similarly, to find left identity.
Fora€ G and a,e € G ax = e has a solution say a’ = aa' = e for somea’' € G
And hence a'is the right inverse of ain G
Similarly, to find left inverse in G

Hence G is a group
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Problem:1 ShowthatG = {a + bV2: a,b € Q}form an abelian group wrt Addition .

Solution: Given G={ a+h2 :a,beQ}

To show that < G, + > form an abelian group.

1.Closure property: V x =az + by 2 y=a+h\V2 €G then

X+y=(an+hiV2) +(a+b2\2) = (art @ + (b1 b2) \2

=a +b™\2 € G wherea’ = (a1 + a2) and b’=( by + b)) €Q  Closure property holds.
2.Associative property: Since all the elements in G are all Real numbers and < R, + > is anAbelian Group.
Therefore, Associative holds in G .that is for all
xo(yoz)= (xoy)oz Vxy2zE€G

3.ldentity Property : Forallx=a +b+2 inG3 0=0+ 0V2 € G such that

x+0=(a+b+Vv2)+(0+0vV2) =(a+0)+(b+0)V2

=a+b+2=x
Similarly 0 + x = x = ldentity element existin G
4.Inverse Property: Forallx=a+b+2 inG3 -x =-a-b+2 € G such that

x+(x)= (a+bvV2)+( -a-b+v2)
={a+(-a)} +{b+(-b)}V2
=0+0+v2 =0
Similarly (-x) + x =0
5. Commutative Property : V x =a; + b, V2 yv=a+bvV2 €G then
x+ty=(a: +bivV2) +(a:+bvV2 ) =(ait+a) .(b:i. b)) V2
= (az+ a1) + (b2 b1) V2
=y +x

< =< G,+ > form an abelian group

Problem:2.
Show that the set of integers Z form a Group w r t the operation * defined by

a*xb=a+ b —1 foralla,binZ

Solution: To show that < Z,* > form a Group
1.Closure Property: Foralla,beZ = a+beZand-1€Z
>a+b+(-1) ez
= a+b-1eZ (Since< Z,+ >isagroup)
=>a * b€L
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2.Associative Property: For all a, b, c € Z then
Toverifya = (b xc) = (a * b)* c.
LHS = a* (bxc)=a*x(b+c—1)

=a * X wherex = b + c-1

=a+x-1
=a+(b+c-1) -1
=a+b+c-2

(a+b—-1)+*c =y *cwherey=a+b-1

RHS = (a+xb)xc

=y+c-1
=(a+b—-1)+c-1
=a+b+c-2
~ax*x(bxc)=(a*xb)*c

3.Existence of Identity: For all a € Z there is an element e € Z (to find ) such that

e —-1=0
=>e=1€Z istheldentitywrt x

4. Existence of Inverse: For all a € Z there is an element x € Z (to find ) such that

axXx =e€e =X *xa

If a*x x=e=2> a+x-1=1
=>x = 2 — a €Z isthe Inverse elementofawrt=*inZ

< Z,x> forma Group.

Problem: 3 Show that the set of Rational numbers

Q1 = Q — {1}form an abelian Group w r t the operation defined by

a*b=a+b—abforalla,binQ
Solution: To show that < Q1,* > form an abelian Group
1.Closure Property:Foralla,be Q1 =a+be Qi andab € Q1
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=>a+beQ; and -abeQ

= a+b+(-ab) € Q1 ( Since < Q1,+ >isagroup)

=>a+b-abeQ
=ax*b € Q1

2.Associative Property: for all a,b,c € Q, then to verify a*(b*c) =(a*b ) *c

LHS=a*(b*c)=a*(b+c-bc)

=a* x wherex=b+c-bc

—a+x—ax
=a+(b+c—bc)—a(b+c—bc)

=a+ b+ c-bc-ab-ac+ abc.

RHS=(a* b)* c=(a+b -ab) *c
=y *c where y=a+b -ab

= y+c—yc
=(a+b -ab)+c—(a+b -ab)c

=a+b +c—ab-ac-bc +abc

- LHS = RHS
3.Existence of Identity: For all a € Q1 there is an element e € Q1 (to find ) such thata a *
e =a=e€e*a
If axe=a=>at+te—-ae=a

=e(l-a)=0
=>e=0€ Q1 isthe ldentitywrt *

4. Existence of Inverse: For all a € Q1 there is an element x € Z ( to find ) such thata

a*x X = e = X *a
If a xx=e = a+x-ax=0 (Sincee = 0)
=2>x(1l—a) = —a
= x = % in Q1 is the Inverse element of a .
5. Commutative property: For all a, b € Q1 then
=b *xa

axb=a+b-ab=b+a-ba
< Qq, *> forman Abelian Group
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Problem:4  Show that the set of positive rational numbers Q* form an abelian groupwrta

operation ~defined by a*xb= % forallab €Q"

\ . \ ab
Solution: Given thata «b= 3 foralla, beQ™
To show that < Q™, « > form an abelian group.

1. Closure property: for alla, b € Q™ and Q™ is a group wrt multiplication
= abeQ and %E Q"
>ab. % €Q+ since closure law n Q+.
= %b €Q+
2a+b €EQ"

. Closure property exist.

2. Associative property: for alla, b, ¢ € Q" then to verifya +(bsc)=(a+b)+«c.

LHS=ax«(bsc)=ax ( %):mxwhere x:%

.bc,
a(—) a(b b .
- & _ 2570 _abg _ @b oeabcE Q
3 3 9 9 )
b
_ (e
3
b
=Ly where y:a?:mb
=yic

=(a+b)+c=RHS ~ Associative property holds.

3. Identity property : for all a € Q™ we have an element ( to find ) e€ Q™ such that
if a:e=a= ?= a= e=2J3 € Q"is the identity wrt «
4 Inverse property: for alla € Q™ we have an element ( to find ) x € Q™ such that

da+*X—=¢— X+#a.

. ax -
if a=x=e = ?=3 smee e =3

9 . . N
= X = = € Q"isthe inverse element of a wrt +
a

5. Commutative property : for alla,b € Q"

ab_ ba . .
aa-b:?:?:b--:a (sinceab=bainQ").
Hence < Q™, » > form an abelian group.
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: . cosa  —sina 1. .
Problem : Show that G = {A o= ( , ) ot €EZ } 1s an abelian group wrt
sina cosa -

Matrix multiplication.

Solution:
cosat  —sina . .
) T o€ Z} 1s an abelian group wrt

To show that G = [A a= ( \
sinx cosu

matrix multiplication.

i —si cosp  —sinf .
1.Closure property: For all A :( cosa =S ) Ag = ( . p b ) m G
’ sina cosa sinf  cosp

_ ( cosa —sinay [ cosf —sinB)
Then AdAp ( sina cosa )( sinf cosp

_ ( cosa cosf3 — sina sinf3  —cosa sinf} — sinacosf3 )
sinacosp + cosa sinf  —sina sinf + cosacosp

_( cos(a+p) —sin(a+p)y _
_(Qih(nr-l-R\ r‘nc(nr-l-R\) _A(H—B‘EG

(Smcea,p EZ= a+PEZ)

}\uAl} =‘;\U.+|3-
2. Associative property: we know that m matrix multiplication for any

three Matrices Associative property holds .. Associative property exist.

. . cosa  —sin« . .
3. Identity property:  Forall A o :( . ) there exist A o m G such that
’ - sina cosa

A Ag =A.:0=A, and Ag A, =Ag:a=A,

_( cos0 —sin0 o
Ao = ( sin 0 05 0 ) 1s the identity

cosa —sina . .
4 Inverse property: For all A o :( . ) there exist A (o) in G such that
: sinad cosa

Av Aoy TAsia) Ao andAce) As =Aa)yra =Ao
A 4y 18 the inverse matrix of A

5.Commutative property :

Forall A, ApmG then AcAp =Au+p =Ap+a =Ap A

Hence < G, . = 1s an abelian group
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X

, - . - X ) -
Problems: Show that the set of matrices G = {( < ) : XeEQ - {07}} 1S a group wrt

X
matrix multiplication.
Solution:
e TFapalla=( @ @ (b by. -
1.Closure property: For all A ( a a) B—( b b )1116
Then

a a b b ab+ab ab+ab 2ab 2ab \. .
AB= = = G
(o a)(y 5) (oot avaar) (2m 2a0 )00
( Smcea,beQ—{0}=>abeQ—{0})
Associative property : We know that i matrix multiplication for any
Three Matrices A, B,CinG A (B C)=(AB) C holds
-~ Associative property exist.

2

)

. Identitv property:

d a

Forall A= ( ) there exist E = ( z z ) in G (to find) such that

C e

AE=A=EA

rae-a=(;2)(e . )-(5 %)
(e 2e)=(5 2)

= 2ae=a = e=% €Q—{0}.

. 1/2 1/2y. .
~ Identity element E = ( 1//2 1?2 ) m G Exust
4 Inverse property: For all A = a4 there exist X = XX m G (to find)such that
prog
-/ a a X X

AX=E =XA

|fo=E=>(: 2)(§ §)=(§ E)

= ( 2ax  2ax ):( 1/2 1/2 )

2ax  2ax 1/2 1/2
1 1
= 28){*5 =X = = €Q—1{0}.

1/4a 1/4a

. . ~ N7 oL r-l—
o Inverse of X 18 X ( 1/4a 1/4a

) m G exist.

Hence <G, .>1sagroup.
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Finite Groups

Definition: A group having finite number of elements then it is a finite group

Problem:1 Show that the set of cube roots of unity form a group wrt multiplication.

Solution: We know that the set of cube roots of unity
G ={1, o, ®®} where ®°*=1.

To Construct Multiplication Table For G = {1, o, ®*}

X 1 w w?
1 1 w w?
) w w?

w? w? w

1.Closure property: Using the composition table the multiplication of any two elements in G

isalsoinG Thatis foralla,b € G = ab € G.

Closure law exist.

2.Associative property: all the elements in G are complex numbers. But the set of

complexnumbers satisfy associative.

~ Associative exist in G.
3.Existence of Identity: Using the table

1.1=1, o.1=0 and 0? 1= 0% 1”
is the identity in G.
4.Existence of Inverse: Using the table
1.1=1 o.0’=1 and o? o = 1Each
element in G has inverse in G

Hence G is a group w r t multiplication.

Problems:2. Show that the set of 4™ roots of unity is a Group w r t multiplication
G={1-1,i,—i}

form a group wrt multiplication.

BSR Maths GDC RVP




Solution: GivenG = {1,-1,i,—i} wherei? = —-1land i®=—iand i*=1

To Construct Multiplication Table for G ={1,—-1,i,—i }

X 1 -1 i =1
1 1 -1 i —1i
-1 -1 1 -1 [
i i —i -1 1
—i —i [ 1 -1

1.Closure property: Using the composition table the multiplication of any two elements in Gis
also inG Thatisforalla,b € G=ab € G.Closure law exist.
2. Associative property: All the elements in G are complex numbers.The set of complex numbers

satisfies associative. - Associative exist in G.

3.Existence of Identity: Using the table

11=1, (1)1=-1 i.1= iand (—=i).1= —i
©1’ is the identity in G.
4. Existence of Inverse: Using the table
11=1 (-D(-1) =1, i(-i)=1and (-)@) =1
Each element in G has inverse in G

Hence G is a group w r t multiplication.

Problem:3 In a Group G prove that if each element is inverse element of it self then it is
abelian.

Solution: LetGisagroup and foranya € G then aa=e >a=a " ----—-- 1)

Andforany b € Gthen bb=e =>b=b"1----- (2)
~ forany a,b € G = By closure law ab € G
Letx =ab €G
From(1) x=x71
= ab = (ab)™?!

=ab=>b"1g?

From (1) & (2) ab = ba and hence G is Abelian
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Problem:

Let G is a group then show that for alla, b € G (ab)?= a?b? ifand only if G isabelian.

Solution:

= Part Suppose ina Group G foralla,b € G
(ab)? = a? b?
= (ab)(ab) = (aa)(bb)

= a(ba)b = a(ab)b (+ Associativ e property)
= (ba)b = (ab)b (~ byleftcancellation)

= ba= (ab) (+~ byRightcancellation)

= (G is abelian.
< Part

Let G is abelian group. To show that forall a, b € G (a b )? = a% b?

LHS=(ab)? foralla,b € G
=(ab)(ab)
=a(ba)b ( ~" Associative )
=a(ab)b ( " G is abelian group )

= (aa)(bb) = a2b? = RHS
Problem:

Prove that the set of n' roots of Unity form a group w r t to multiplication of complex numbers.
Solution: Let x=4%1 = x= 1Y™ = (cos0 + isin0)/*

= [cos(2km + 0) + isin(2km + 0)]*/™ for k = 0,1,2,3,

= [cos 2km + isin 2kn]*™  for k = 0,1,2,3,

[cosZZ 4+ isin 27 ] fork=0,123,

But cosf +sinf) = e

X

2kmi
~ x=en fork=0,123,..
20w 2Vmi 2@)mi 23w 2kmi
Putk=0,1,2,3, ......... weget G ={en ,een ,en ,en .....en }

2mi

letw = en

G ={1l,w,w? w3 ... ... .0"1} where w" =1but w® # 1 isthe set of nth roots of unity
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Toshowthat< G, . > isan abelian group.

By the definition of G foralla € G a" =1
1. Closure property:
By the definitionof GForall a, b € G a"=landb"=1

Now (ab)"=a"b"=11=1=abeG.
= Closure property exist.
2.Associative Property: All the elements in G is complex numbers.
But the set of complex numbers satisfies associative.

-~ Associative exist in G.

3.Existence of Identity: By the definition of nth roots of unity 1 = °=® "
is the identity inG existand forallae ¢ > a.1=a = 1.a
4.Existence of Inverse: Forall @™ € G where0< r< n-1 3 anelement
w™e Gwherenr>1=sn—r—1>0suchthato ' w V=" =1,
» o™ DeG isthe inverse element of o " .

Hence G is a group wrt multiplication

All the best
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Unit-I1 Subgroups, Cosets & Lagrange’s theorem
B. Srinivasa Rao. GDC RVPM
Definition (Complex of the Group)

If G is a Group, then any non-empty subset of G is called Complex of the Group.

W ©

Example: H= {2 ,3,4,5, 6,... } is a Complex of the Group of integers < Z,+ >

G

Example: H={ i, —i } is a complex of the Group G ={ 1,-1,i,—i }.
Properties: If Hand K are complex of the group G then
DH'={h':heH}
i) HH™* = {hyh,”* : hy € H h, € H}
iii))HH = { hyh, : h, € H h, € H}
iv)HK = {hk:h € H,k € K }
WH 'K {h'k™:h eH keK}

Definition (Sub group) :

A non-empty subset H of a group G is said to be subgroup of G if H satisfies all the
four properties of the group or H itself is a group.

H (4 Propefties)
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Example: H={1,-1}isasubgroupofG={1,-1,i,—i}
Example: The set of Even Integers 2Z={....... -6,-4,-2,0,2,46, ...}
and the multiples of 3 edz={....... -9,-6,-3,0,3,6,9, ... .. } etc.

are the subgroups of Group of Integers Z w r t addition.

Result: Prove that if H is a sub group of G then H! = H.

Proof: Let H is a sub group of G, For all h € H and H is a subgroup of G
By inverse law inthe subgroupH h'eH = (h™1)"1eH? =heH?

ForallhleH! whereh e H

But Hisasubgroupof G AsheH By inverse law h! € H.

From(1)and (2) H?!=H
Note: B ut converse is not true. since H={ i, —i } is a subset of a Group G = {1,-1,i, —i }.

Clearly H={i Y, (=)™} ={—i,i}=H
But H is not a subgroup of G, Since i X —i=1€& H
Result: If H is a subgroup of a group G then prove that HH = H

Proof: Given that His a subgroup of G

To show that HH = H
Case—1 HH € H
By the definition of HH ={ h;h,: h; € H,h, € H}
Foranyx € HH = x = hth, € HH Where h, € H h, € H
Ash, € H h, € Hand H is a subgroup by closure law h;h, € H

=>X€EH ~HHC<SH - (1)
Case-2 HC< HH
Foranyh€ H > h = he € HH (- identity element in H)
= h € HH
~HC HH ----(2)
From (1) & (2) HH=H
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Theorem (Necessary and sufficient condition for sub group of a group)
Statement: A non-empty subset H of a group G to be a subgroup if and only
iff foralla,beH=ab!eH.
Proof: = Part Suppose H is a subgroup of G
foralla, b eH
=>a€H, beH
>a€eH,blteH ( = H is subgroup inverse property in H)
=> abte H. (by closure property in H).
< Part  Assume that H is a subset of G and foralla,be H=>ab1e H.
l.ForallaeH=aeH, ae H => aate H(given)

= e € H. Identity element exist in H.

2AseeHandforallbeH = eb'le H
> bleH

~ forallb € H= bt € H Inverse property exists in H
3.Foralla,beH=>ae H, be H

=>a€H, ble H (SinceforallbeH =b1e H)

=>a(b)teH (foralla,be H=>ab?te H.)
=abe H
Closure property exist inH

4.As HC G and G is a group and it satisfies associative property
and hence H Satisfies associative.
Hence H is a subgroup of G

Theorem: Let G is a group then prove that H is a subgroup of G & HH!' =H,

Proof: = Part Let H is a subgroup of Gthe HH=HandH*=H --------- (1)
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LHS=HH'=HH=H=RHS  (Since from (1))
< Part Let H is a subset of G & H H* = H. To show than H is a subgroup
By the definition of HH for all a, b € H then
able HH'=H = ab!eH.
Hence the theorem

Theorem:
The necessary and sufficient condition for a nonempty finite subset H of the groupG
to be a subgroup is that for all a, b € H then ab € H.

Proof: = Part Suppose H is a subgroup of G
=~ By closure property in H for all a, b € H then ab € H.
< Part Suppose H is finite subset of group G andfor alla, b € Hthenab € H ----- (1)

To show that H is a subgroup of G .

1.ldentity property: From (1) forallae H=>a,a€e H
= aa € H> a?> € H=> againfora€ H,a? € H
=aa’ €H
= a® €H andsoon.....
We get { a,a?,a3,a*, ... ... ... ca ... ... 1S H
But H is a finite subset of G. An infinite set is not a sub set of a finite set
. some of the elements in the set { a,a?, a3,a*, ... ... ... ,a .. .. } are repeated
Suppose a” = a® for somer >s
=>a"5=a’ forsomer—s>0
, >a"5=a"€eH > a® € H Sincer — s is positive
2.Inverse property: for alla € H3 anelement a5~ € H (r — s — 1 > 1 such that

aa"™ S 1=a"5=a"€eH& a5 la=a"5=a"€eH
=~ Inverse property exists in H.

3.Closure property: Given that for all a, b € Hthen ab € H.
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4 Associative property: AsH < G and is a group Associative holds in H.
Hence the theorem.
Example:We know that H={ 1,—1, i, —i } is a finite sub group of group of Complex
numbers C.
Asi€eH>ii=i*’€H Alsoi e Handi? €H =i.i?=i€H
Again i€e Handi*€H =>i.i3=i*€H etc

= {i,i%,i3,i%i° .........} € H but H is finite. Elements are repeated.they are

P=—i,i*=1i°>=i*i=i =2i°>=ietc

Theorem: Let H and K are two subgroups of a group G then prove thatHK is a subgroup
of Gif and only is HK=KH.

Proof: = Part Let HK is a subgroup of G
= (HK)* =HK (Since H is a subgroup = H=H)
=> K!1H1=HK
= K H =HK (Since H,K are a subgroups = H!=H and K= K)
« Part : Suppose H and K are two subgroups of a group G and HK=KH
To show that HK is a subgroup of G
That is to show that (HK ) (HK )* = HK (+H is a subgroup of G & HH! = H)
LHS= (HK) (HK )= (HK) K1H
=H(K K1)H" (- associative)
=H(K )H? (KisasubgroupofG & KK'!=K
=(HK)H
=(KH)H! (v HK=KH)
=K(HH?)

=KH =HK=RHS (+HH1 = H)
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Theorem: Prove that the intersection of two subgroups is a subgroup of the group G .
Proof:
Let H; and H; are two subgroups of the group G.To show that H1 N Hais also subgroup of G .
1.Hy N Hy # ¢ AsHjand H; are two subgroups of G by
Identity property e € Hy ande € H2 = e € H1 N H2 = Hi N Ha is non-empty sub set of G

2.Foralla,bEHiNH,=> ab!tEH; NH;
Foralla,beHiNH,=a,b&eHianda, b€ H
But Let H1 and H; are subgroups of G
abl€H;andab € H;
=ab! € HiNH;

Hence Hi N H; is subgroup of the group G

Theorem: Prove that the union of two subgroups is a subgroup of a group G if and only
if one is contained in other.

Proof : Let H1and Hz are two subgroups of the group G To prove that
H1U H; is a subgroup & Hi1 S Hyor H; S H;
<Part Let Hjand H;are two subgroups of the group Gand Hi € H,orH; € H;
To show that H1U H; subgroup
If HL € H, = HiU H; = Ha subgroup of G
If H, € H1 = HiU H, = H1 subgroup of G
= Part  let Hyand Hz subgroups and HiU H; is a subgroup
toshow thatHi S H, or H; S H;
IfH1 ¢H,= Forall a€Hi ¢H, =>a€H; butag Hy (1)
If Hb € H1 = Forallb€H, ¢Hy =>bE€H, butb&€ Hi._ (2)
As a€H;, beEH, => a,b€ HiUH;
But H1U H; is a subgroup
- ab€ HiU H;
= abeHiorabeHy o (3)

From (1) and (3)
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Fora e H; abeH;= a'eH; (subgroup)ab e H;

= al(ab) € Hi ( Closure property in H1)
= (ata)b € Hy

:>ebeH1

= b € H; but from (2) b & Hi it is Contradiction.

Also from (2) and (3)
abe H,beH,= abeH; b'eH;, (Sub group of G)

= (ab)bleH, (Closure propertyinH;)

=a(bbl) eH;

= ae € H

= a € H; butfrom (1) a & H, it is also a contradiction.

~“H1€H, or HE Hy

COSETS

Definition (Cosets):
Let H is a subgroup of the group G then for any a € G to define a set

ifH={hy, hy, h3,...."h e }={h:h € H}

aH ={ahy, ahy, ahs,....ahn}={ah: h € H }isthe left coset of Hin G.

Ha = {h,a, h,a, hsa, ........hya,..} = {ha: h € H} is the right coset of Hin G

Example: We know that

H={. .—-6-4-2024,6,.....} isasubgroup of additive group of Integers

-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,.......}

Then the right cosets of H for 3€ Z but3 ¢'H
{.—6+3,—4+3,-2+30+32+34+3,6+3,}

H+3
={...... -3,-1,1,3,57,9,........ 3.
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H+5={....... —-6+5—-4+5-2+50+52+54+56+5,.......}

={...... -1,13,5,7,911,}  for5€ Zbut5 ¢'H
H+2={.... —6+2,—4+2,-2+20+22+24+26+2)
={....... —4,-2,0,2,468,....} =H

~ for2e€e Hiff H+ 2 = H

Similarly for4 € Hiff H+ 4 = H
Note: Forae H ifandonlyif Ha=H=aH

Theorem If His a subgroup of the group G for any a, b € G Prove that
i)Ha=Hb iff ab'eH
ii)aH=bH iff a'b€H

Proof: = par SupposeHa=Hb - (1)
Asa € Ha = ae Hb since from (1)
= ab leHbb?
= ab e He
= ab le H
< Part.

i) Suppose ab e H=>Hab t=H (Since ae H& Ha=H=aH)
= (Hab?)b=Hb
= Ha(btb)=Hb
=>Ha(e)=Hb
=>Ha=Hb

ii)Similarly, to prove second one also. aH = bH iff a'b €H

Theorem: If H is a subgroup of the group G for any a, b € G Prove that
iY)aeHb iff Ha=Hb
ii)beHa iff aH=bH

Proof:i) = Part Asa € Hb= ab e Hob! = ab e He
=> ableH= Hab'=H (SinceaeH ifandonlyifHa=H)
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= (Hab?) b=Hb=Ha=Hb
& Part LetHa=Hb clearly aeHa=ae€Hb SinceH a=Hb

Similarly, to prove b € a H iff aH=bH
Theorem:
Prove that in a group G any two right or left cosets are either identical or
disjoint.
Proof: Let H is a subgroup of the group G to show that

for any a, b €G theright cosets Ha and Hb are
either Ha = Hb (identical) or Ha n Hb = ¢ (disjoint)

Part-1 suppose Ha N Hb # ¢
~foranyxe Han Hb = xe Haand x € Hb
= X = hia and x = hob for h1, h, e H

= hia=hsb forhi, h, €H
:>h1_1(h1a) — hl_l(hza) (+ hy €H = hle H)

= a € Hb = Ha = Hb identical
Similarly, to prove left cosets also

Part-2 Itis very clear if Ha#HbthenHan Hb = ¢

Lagrange’s Theorem for finite groups

Statement: The order of a subgroup H of a finite group G is a divisor of order of the group
G thatis O(H) is a factor of O(G)

Proof:
Let G be a group of finite order n.ie 0(G) =n
Let H be a subgroup of G and leto (H) =m

Suppose hi,hy, ... v are the m members of H.

Leta €G. Then Hais a right coset of H in G and we have
Ha={hla,h2a,...hma}.

Ha has m distinct members, since hia = hja = hi = hj fori #j
Therefore O (Ha) = m.foralla €G
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But any two distinct right cosets of H in G are disjoint or identical

ie , they have no element in common. Since G is a finite group, the number of distinct right
cosets of H in G will be finite, say, equal to k.

The union of these k distinct right cosets of H in G is equal to G.

Thus Hay, Hay, Hag, - .- .- Hagare the k distinct right cosets of H in G,
o G = Ha, UHq, UHa, U, ... .....U Ha,
= 0(G) = 0(Haq, UHq, UHq, U, ........U Hg,)
n = 0(Ha,) + (Ha;) + (Has) + - ... +(Hay )=
Since Hay, Ha,, Hag) - - .- Hay, are disjoint co-sets
=m+m+ ... +m (k times) (SinceO(Hg) = m)

n=km = m/n (Since12 =3 X 4 = 3/12)
= O0(H) / O(G) that is order of the subgroup is a divisor of order of the Group

Note:n (AUB) = n(A) + n(B)— n(ANB) Butif Aand B are disjoint .
i.e,ANB =¢thenn(AUB) = n(A) + n(B)

Note: 3x5=15 = 3isa factor of 15 and 5 is a factor of 15 ie 3/15 5/15
And 17 x4 =68 = 17 is a factor of 68 and 4 is a factor of 68. ie 17/68 ,4/68

QO

a;

*khkkkkkkkk
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NORMAL SUBGROUPS

Definition (Normal subgroup):
A non-empty subset N of Group G is said to be a Normal subgroup of G

if 1.Foralla,beN=ab'eN (subgroup property)

2.ForallxeG,neN=xnx'eN (Normal property)

Note : If Nis Normal then xNx*={ xnx': xeG,neN}EN

Example: H={1,-1 } is a Normal subgroup of G={1,—1,i,—i }
letx = i,n=-1leHandx'=il=-1€G
Now xnx*'=i(-1)(-i)=-1€H

Simple Group: A group G having no proper normal subgroups is called simple group
ie { e }and G are only Normal subgroups of G
Theorem: -1
If N is a subgroup of a group G then prove that N is Normal if and only if xNx* =NV x € G.
Proof: = part. Suppose N is normal subgroup of G
VXEG.NnEN = xnx! €N

= {xnx! EN : neEN }CEN

From (1) forallx EG. > x*€G
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Therefore (x *)N (x*)* SN

=>xINx SN
=>x(xNx)x? €xNx* V X €EG.

>(x xYN(xxt)S xNx? V x EG.
=>(e)N(e)ExNx? V xEG.
>NCSxNx? V X € G. --------- (2)

From (1) and (2) xNx* =N V x€G.

< part Suppose xNx! =N V x € G toshow that N is normal

By the definition of xNx*

VXEG.NEN = xnx! exNx! =N
=>xnx! € N
Hence N is normal subgroup of G
Theorem: 2

If N is a subgroup of a group G then prove that N is Normal if and only if each left coset of Nis
the right coset of N in G .

Proof: = part Suppose N is normal subgroup of G
xNx'=N Vx€EG.

= (xNx!)x= Nx

= xN(x!x)=Nx VxE€G.(by associative)

=> xN=Nx Vx€G.

= each left coset of Nis the right cosetof N inG.
& part Suppose xN=Ny Vx,y €EG--—-—-—--—-- (1)

AsxExN=Ny VyEeG

=>XENy VyeG.

= Nx= Ny Vy €G.-———-—-- (2)
From(1)and(2) xN=Nx VXx€EG.

= xYxN)=xINx Vx€G.

= (x'x)N =xNx VxE€EG.

=> eN =xINx VxEG = N=xNx VxEG.

Hence N is normal subgroup of G.
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Theorem: 3
If N is a subgroup of a group G then prove that N is Normal if and only if product of two right

(left) cosets of N is again right(left) coset of N in G.

Proof: = Part Suppose N is normal subgroup of G and N x, Ny are two right cosets of N .

Toshowthat(NxNy)=Nxy VXx,yEG
LHS=(Nx Ny)

= N(xN)y=N( Nx)y (since Nisnormal subgroup=>xN=Nx )
=NNxy

=N xy (Since His subgroup=>HH=H)

= RHS

&< Part  Let Nis a subgroup of G and product of two right co sets of N is a right coset of Nin G
ie (Nx)(Ny)=Nxy VXY EG e, (1)

To show that N is Normal ie for allx e Gn € N = xnx'e N
Since xnx'=e (xnx!)  since e is the identity in H
=(ex)( nx?!) € (Hx)(Hx') since ee H
=(ex)( nx?) €( Hxx!) since from (1)
=(x)( nx?) €( He)
=xnx'eH
. forallxe GneH=xnx'eH
Hence H is normal subgroup of G

Theorem:4

Prove that the intersection of two normal subgroups is also a normal subgroup of group G.

Proof: Let N;and N; are two normal subgroups of the group G.

To prove that N; N N;is also a normal subgroup of G.

/Zj’\\
\ )
P PR P

1) Nz N Nzis non empty.
As N1 and N;are subgroups by Identity law e € Niande € N,
>e€ NiN N
= N1 N Nz is nonempty.
2)Foralla,b€ Ni1nN N; >abl€ Nin N
AsForalla,bENiNN,= a,b€ N;anda,b €N,

But N; and N;are subgroups of G
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= ab'€ Njyand ab'e N,
=able N: N N,

3)Forallx EG,n€N;NN; @xnxt€ N1N Ny
Asforallx EG,nEN1 NN, =2x €EG,nENi;andn €N,
= XEG,nEN;jandx€G,n€EN;
But N; and N;are normal subgroups
=>xnx'€N;and xnx* €N,
=>xnx! EN1N N,
Hence N; N N3 is a normal subgroup of G

Definition (Index of subgroup): In a group G the number of distinct right or left cosets of a
subgroup H is called Index of Hin G and is denoted by [ H : G]

Theorem:5 Prove that every subgroup of index 2 is normal.
Proof: Let His a sub group of a group G and index of H is 2.
To show that H is Normal.
Asindexof His2 .~ foranyxEG=x€EH orx & H.

IfxEH = Hx =H=xH = Hisnormal.

H Hx or xH G

If x € H = we get aright coset Hx or a left coset xH.
If Hx is a right coset of H in G and index of H is 2.
~G=HUHx or G=HUxH
=>HUHx=HUxH
=>Hx =xH since H, Hx and x H are disjoint
= His normal.

Theorem :6

Let H is a subgroup and N is a normal subgroup of a group G then prove that H N N is a normal
subgroup of H.

Proof: As H and N are subgroups of G= H N N is a sub group of G
ButHNN S H=HNNisasub group of H.
ie to show thatforallxEH,n €EHNN =>xnx*€ HNN
AsforallxeH,neHNN = forallxeH,n€Handn €N

= forallxeH,n €Handxe€G,n €N (~“HCQG)
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As N is normal subgroupof G = x €G,n € N = xnx?! € N -m--mommemmeemem- (1)
As His a subgroupof G= forallx EH,n EH=>x,x*€H,n €EH
= xnx* € H (+ HisasubgroupofG )---------- (2)
From (1) and (2) xnx* € H andxnx® €N
=>xnx'€HNN.
Hence the theorem.
Theorem :7

Let N and M are two normal subgroups of a group G then prove that NM is also a normal
subgroup of G.

Proof:
We know that any sub group is commutes with a complex of a group .
Therefore NM=MN (Here we are taking M is complex of G)
= NM is a subgroup of G ( *+ HK is subgroup of G iff HK = KH )
Now to find the normal property

Forall x EG,nm € NM = x(nm)x ! € NM

1 1

Asx(nm)xt=x(nem)x? =x[n(xtx)mlx?
=[xnx][xmx?!]€ENM
Since N and M are normal subgroups of G
weget[xnx1]EN [xmxt]eM
Hence NM is a normal subgroup of G
Theorem: 8 (Normalizer of a group)
If G is a group and for any a € G show that the set
N(a)={ x€ G :ax=xa fora € G is a subgroup of G and is called normalize of G.
Proof: Giventhatforallxe N(a) & ax=xa foraeG
1) N(a)is non empty: we know thatae=ea & e € N(a)

= N(a) is nonempty sub set of G

2)forall x e N(a) = x* € N(a)
Asforall x € N(a)= ax=xa

= x1(ax)x1=x 1(xa)x?
= (xta)(xx™*)=(x"x)(@x*)
= (x*a)(e)=(e)(ax™)
=>x'a =ax? =x?eN(a)

3) for all x, y € N(a) = to show that x y™* € N(a)
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Thatis to show that a(xy?!) =(x y!)a

LHS=a(x y!) =(ax)y? =(xa)y? (sincex EN(a) ©® ax=xa fora € G)
=x(ay?)
=x(yta) (sincey EN(a)=>y € N(a))
=(x y!)a=RHS

~ N(a) is a normal subgroup of G
Note : N(e) = G where e is the identity and N(a) is not a normal subgroup of G

Theorem:9 Let M and N are two normal subgroups of group G such that M N N = { e } then prove

that each element in M is commute with each element in N.
Proof : Give that M,N are Normal subgroupsof Gand M N N={e}
To show thatforallmeM,neNthenmn=nm
ie (mn)(mn)t=(nm)(mn)?
iee=(nm)(nm?)
ie nmnim?! =e
Case-1. Let Mis Normal and Nis asubgroup of G

~foralmeM,neNCG
=>meM, neGand M is Normal
>nmn'eM butmleM

>nmnimleM byclosureinM......... (1)

Case-2. Let Nis Normal and M is a subgroup of G
~forallneN, meMCEG
=n'eN, meGandNis Normal
>mntmleN butneN
>nmn'm!'eN byclosureinN........ (2)
From (1),2) nmnim*eMNN ={e}

snmnim?! =e Itfollows mn=nm

Quotient Group

Theorem:10 Prove that if N is a Normal subgroup of the group G then the set of cosets of N G/N =
{N a:a€G}formaGroup w rtcoset multiplication
NaNb = Nab foralla,be G
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a-l
:, (0 (9 (s
z (2

1.Closure Property: For all Na, N b € G/N then a, b € G but G is a Group

Proof:  Toshow that< G/N, . >isa Group

=>abeaG
= N (ab) € G/N (Since a€ G & Na € G/N
= (N a)(Nb) € G/N
= G/Nis closed
2) Associative property: ForallNa, Nb, N c € G/N wherea,b,c€G
Now (Na) [( Nb)(Nc )] =(Na) [N(bc)]
=N[a(bc)]
=N[(ab)c)] since[a(bc)]=[(ab)c)]inG
=[N(a b)](Nc)
=[(Na) (Nb)] (Nc)
Associative property exist.
3)ldentity property: For all Na in G/N there exist a coset Ne in G/N ( e €G)
Such that (Na) (Ne)=N(ae)=N a.
(Ne )(Na)=N(ea)=Na.
~ Ne =N is the Identity in G/N.
4)Inverse property: Forall Na in G/N there exist a coset Na® in G/N (sincea€ G = al€ G
such that (Na)[Nat]=N[a(a')] =Ne=N.
[Na'](Na)=N(a'a)=Ne=N
~ [ Nal]isthe inverse element of Nain G/ N.
< G/N, . >isaGroup
Theorem :11 Let N is an normal subgroup of the group G then prove that
If G is commutative group then G / N also commutative
Proof: For all Na, Nb € G/ N where a, bE G
(Na) (Nb) =N(a b)
=N (ba) (~ab=bain@)

=(Nb) (N a) Commutative property holds.
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B. SRINIVASARAO. Lecturer in Mathematics, Government Degree College, Ravulapalem.
Definition (Homomorphisms)Let G and G © are groups and a function f: G —» G is said to be
homomorphism if foralla,b € Gthen f (ab) = f(a) f(b).

Definition (Endomorphism): A homomorphism f from G into itself is called endomorphism
Definition (Isomorphism): A function f: G — G¢ is said to be Isomorphism if it is
1)One-one 2) onto 3) Homomorphism
And is denoted by G = G’
Monomorphism: A function f from a group G into a group G’ is said to be Monomorphism if it is
l.one-oneieforalla,b € G If f(a) = f(b) = a = b.
2.Homomorphism.
Epimorphism: A function f from a group G into a group G’ is said to be Epimorphism if it is
1)Onto ie forally € G'Ianelement x € G suchthaty = f(x).
2) Homomorphism.
General properties of Homomorphism’s:
Letf: G — G’ isahomomorphism then prove that
1) f(e) = e’ where ¢’ isthe identityin G’
2) f@aY) = [f(@)]™' foralla €G
Proof : 1) By identitylawinG ae = a = ea
Now f(a) = f(ae) = f(a)f(e) sincefis homomorphism
f(a) e = f(a)f(e) wheree’ is the identity in G’
e = f(e) since by left cancellation law .
2) We know by inverse law e =aa ! =a'a foralla €G

Sincee’ = f(e) = f(aa™') = f(a)f(a™1) (- fis homomorphism)
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foe = fla)f(a™t) e &)
Againe' = f(e) =f(ata) = f(at) f(a) (= fishomomorphism)
e = f(@) f(a) e @)
from () and (2) f(a)f(at)=e"=f(a™) f(a)
(v xy=e=yx =>y=x"

It follows f(a™Y) = [f(a)]™! foralla €G

Kernel of Homomorphism: Let f: G — G’ is a homomorphism then to define Kernel of
Homomorphism by
Kerf = {x € G: f(x) = e where ¢ istheidentityinG’ }

and is denoted by K or Ker f.

Theorem: Let f: G — G’ is a homomorphism then prove that Ker f is a normal subgroup of G.
Proof: By the definition of Ker f
Forallx € Ker f if and only if f(x) = e where e’ is the identity in G’
1) Kerf is nonempty:
By The General Property f(e) =e = Ker f is non empty.
2)Foralla,b € Ker f = ab™! € Ker f
As f(ab 1) = f(a)f(b™Y) - fis homomorphism
= f@ U™ v fl@) = [f(@]™" foralla €6
= el =¢ ~ from (1)
s~ f(ab™') =€ =ab™! € Kerf
3) Forallx € G,n € Kerf = xnx ! € Kerf
Now f (xnx~ 1) = f(x)f(n) f(x™H)  f is homomorphism
= f(x)f(n) [fI™ =~ flaD=[f@]™" foralla €G
= f(x)e' [f)]™t (v neKerf = f(n) =¢€)
= f(x) [f]t=¢
fxnx™) = ¢ it follows xnx~! € Ker f.

Hence Kernel of fis a normal subgroup of G
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Theorem: If f: G — G’ is an onto homomorphism then prove that
f is Isomorphism if and only if Ker f = {e}
Proof: = Part
Let f is isomorphism to show that Ker f = {e}
ForallxeKerf & f(x) = e where e’ istheidentity in G’
o f(x) = f(e) sincef(e) =¢€
& x = e since fis one-one function
ox € {e}
. Forallx € Kerf & x € {e}
~ Kerf = {e}
< part
Letf: G — G is an onto homomorphism and Ker f = {e}
to show that f is one — one function .
Let f(a) = f(b) foralla,b € G
fCOLf®OI™ = F(DfDI™ foralla,b € G
=S f(a)f(b™) =€ (since f(b)isinG")

= f(ab™Y) =¢€' (= f is Homomorphism)

But forallx € Ker f if and only if f(x) = e where e’ is the identity in G")

> ab '€Kerf={e}=>abl=e >a=5hb
~ f is one — one function.

Theorem:

Let N is a normal subgroup of the group G and G/N is the Quotient group then prove that

the mapping f : G = G / N defined by

f(x) = Nx forallx € G
is an onto homomorphism and Ker f = N
Proof: Giventhat f : G — G / N defined by

f(x) = Nx forallx € G

/ CIONG

BSR MATHS GDC RVPM




1.Clearly it is onto function
By the definition of f forany Nain G/IN3a € G suchthat f(a) = Na
2.f is Homomorphism:
For all x, y in G then
f(xy) = Nxy = NxNy (Since N is normal subgroup of G)
= f(x)f(¥)
~ fis Homomorphism.
3.To show that Ker f = N.
Forallx € Kerf & f(x) = N (SinceN is the Identity element inG / N)
© Nx =N since by the definition of f
© x €N since a € H & Ha = H= aH
Hence Ker f = N
** State and prove Fundamental theorem of Homomorphisms of Groups.

Every homomorphic image of the group is isomorphic to some quotient group of the group .

Proof :
x f f(x) f(y)
G G
— ]
y @ ———pp o

©

o O O

Let G and G’ are two groups and f : G — G’ is an onto homomorphism

G/K

then f(G) = G’ isthe homomorphic image of the group G.
As f: G — G’ is a homomorphism
~Kerf ={x € G: f(x) = e where ¢ istheidentityinG'} exist
LetKer f =K but kernel of homomorphism is a normal subgroup of G.
~G/K ={Kx:x € G}isaQuotient Group .
To show that G / K is Isomorphic to G’

Define a functiongp: G /K - G by (x) = Kx forallx € G.

BSR MATHS GDC RVPM




1) First to show that ¢ is well defined function from G/ K — G’:
Forall Kx,KyinG/K

LetKx = Ky = xy leK (Ha=Hb e ab ' € H)
= xy~!eKerf ( Since Ker f = K)
>f(xy H=e

>f(x)f(y™Y) =¢e (sincefis Homomorphism)
= f()[f)]t=¢
= f(x) =f(y)
= ¢(Kx) = ¢(Ky)
@ is well defined function
2) ¢ is one — one functionG /| K = G
For all Kx,Ky in G/K
Let p(Kx) = o(Ky)= f(x) = f(¥y)
> =) [f I
>f(x)f(y™Y) =¢€ since f (y) in G and is Homomorphism

)

= f(xy™?)=e

= xy ! € Ker f but Ker f = K
=> xy 1 ek
= Kx = Ky.

@ is one — one
3) @ is onto:
As ¢+ G/K - G = f(G) isthe function forany y = f(x) € G and f is onto
3x € G > K x € G/K suchthat
p(Kx) =y = f(x)
= @ is onto.
4). ¢ is Homomorphism:
Forall Kx,KyinG/K
To verifythat ¢ [(Kx) (Ky)] = ¢ (Kx) ¢ (Ky)

LHS = ¢ [(Kx)(Ky)] = ¢[Kxy] since K is Normal subgroup of G
= f(xy) by the definition of ¢
= f(x)f(y) since f is homomorphism

=@ Kx)p(Ky) = RHS

Hence @ is an isomorphismand G /| K = G’
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Result: Show that the mapping a — a™! is Automorphism on G iff G is abelian.
Proof:
= part suppose f:G — G is an Automorphism defined by
f(a)= a! foralla € G
to show that G is abelian group
foralla,b € G and f is Homomorphism
~ f(ab) = f(a) f(b)
= (ab)™ = at b1
= (ab)™! = (ba)?
= ab = ba
~ G is abelian group.
& part suppose G is abelian group To show that f is Automorphism
1) one —one: foralla,b € G
Let f(a)= f(b)= al=b1
> (@)1= !
=>a=0»
2)onto: forally € G 3 x € G > x~! € G(Group) suchthaty = f(x) = x™1 € G.
3) Homomorphism: for alla,b € G
f(ab) = (ab) ™t = (ba)™! = a b7t = f(a)f(b) (since G is abelian group )

Hence f is Automorphism

*khkkkikikkk
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GOVERNMENT DEGREE COLLEGE , RAVULAPALEM

( An Outcome based educational institution since 1981)
Affiliated to Aadi kavi Nannaya University

Permutation Groups
- B SRINIVASARAO.GDC RVPM

Definition: A one -one and onto function from a finite set S into S is called a permutation.
IfS=1{1,2,3,4,5,6} and f: S— S is one-one and onto function then the permutation is denoted

by

Product of two permutations:

7=(54 156 2)
meno=(4 2343 9)
(6321 )
=Gsres 54136 2)
(L2345 6
16 423 5

Clearly fg # gf

Identity Permutation: A permutation is in the form

1 2 34 5 6); _ _
(1 2 3 4 & 6)lscalled Identity permutation.

Inverse of a permutation:

_(1 2 34 5 6 o . (5 4 13 6 2
Iff—(5 4 13 6 2)1:henltsmversels(1 5 34 5 6)or
2 34 5 )

6 4 2 1

(13345 6
Note: If a finite set S containing n elements, then the number permutations formed from S into S

are n!
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Note: The set of permutations form a group w r t permutation multiplication and is called
permutation group.

Cyclic Permutation: A permutation is in the form

(123456
2 4 5 1

3 6 )of length 6 and is simply denotedby (1 2 3 4 5 6).
2 34 5 6
3 45 6 1

1 7 8 9 ) .
Andf=(2 8 9 7) Is also cyclic and is denoted by (123456) (789)
(1 234 5 67 8 9, .
Also f_(2 S 14 78 9) is cyclic denoted by (12 3)(4)(5)(6 7 8)(9)

It’s length 3+ 3 = 6.
Cyclic permutations: There no common element between two cycles called disjoint
cycles.

ROEFEREREE

Transposition: A transposition is cyclic permutation of length 2.

That is ) are disjoint cycles.

Example: (21 21) =(1 2),(,? :;) =(23) etc

Note: (12 3 4 56)=(12)(13)(14)(15)(16)
Even and Odd permutations:
A permutation f said to be Even if fcan be expressed as even number of transpositions and it
can be expresses as odd number of transpositions then it is Odd permutation.
Example:l Iff=(1 2 3 4 5 6 7)=(12(13)L4@5Q6)LT7)
Number of transpositions = 6 so, it is even permutation
Example2 Iff=(1 2 3 4 5 6)=(12)(13)(L 4)(1 5 (1 6)
Number of transpositions = 5 so, it is Odd permutation.
Problems:
If write the permutations into disjoint cycles
1.(132)567)26 1)(45)
2.(136)(1357)67)(1234)
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Solution: 1. Giventhatf=(1 3 2)(56 7)(2 6 1)(4 5)

(35 1 )G75)( 675 )G o)
1 2 3 4 5 6 7)
7 4

=(32651

_(1 3 67 4 5y/2)_
f_(g 6 7 4 5 1)(2)—(136 7 4 5)(2)disjoint cycles

2.Giventhat f=(1 3 6)(1357)(6 7)(1234)
“Ge1)G:s,1)6 G530

(55716 42

_(1 5 6 4\/2 3 7\_
f_(s 6 4 1 )(3 7 2)—(156 4)(2 3 7)disjoint cycles

Note: The inverses of above permutations are
1f1=(547 6 31)2 2f1=4 65 1)(7 3 2)

If write the permutations into disjoint cycles and find whether they are Even or Odd

1.(132)567)26 1)(45)
2.(136)(1357)67)(1234)
Solution: 1. Giventhatf=(1 3 2)(56 7)(2 6 1)(4 5)
-G 2 1)G7s)(612)G )
“G2es 1 74)

_(1 3 67 4 5\(2\_
f_(3 6 7 4 5 1)(2)—(136 7 4 5)(2)disjoint cycles

Againf=(136 7 4 5)(2) =(1 3)(L 6)(L 7)1 4)(L 5)(2)

Number of transpositions = 4 Even permutation

2.Giventhat f=(13 6)(1357)6 7)(1234)
G e )Gss )G IG5
(1 2 3 4 5 6 7)
3 7 1 6 4 2
(1 g jf)(;; Z)Z(l 56 4)(2 3 7)disjoint cycles
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Againf=(156 4)2 3 7)=(15(1 6)[1 H2 3)2 7)

Number of transpositions =5 Odd permutation

12345677, .

T.Shnwthatf=(32456T1)150ddpermutahun.
o O _(12324567
Suluhun.Gwenthatf—(g2456?1

=(335e7)(3)=13456 N@)
=(13)1 91 5)(1 6)(1 7)(2)

Number of Transpositions =5  Therefore, 1t 15 Odd Permmutation.

8. Show that f= ( ; : f g 2 ;i) is Even permutation.

4
8
Solution: Given that f— (222 #3878 )_ (1722 )(42)(5)(5)
=(1 7 2 3)(4 8)(5)(6)
=(1 7)1 2)(1 3)(4 8)(5)(6)
Number of Transpositions =4  Therefore, it 15 Even Permutation.
9.If G = {1,w, w? } is a group then find all the regular permutations of G.
Solution: Given G = {1 .w, w? } By Cayley’s theorem f,( x) = ax forallx € G

Now the regular permutations are { fj . f, f.z } where
}c=(1 o cuz):(l w mz)

1 1.1 1.w lw? 1 w  w?

_ 1 w w? ) (1 o w®

fm, w.1l w.w w.w? w w? 1
f :( 1 w w? ) _ (1 @ mz)

w? w21 wilo wiio? w? 1 w )

10 Marks Questions.
10.State and prove Cayley’s theorem for permutation groups.
Statement: Every finite Group is Isomorphic to Permutation Group.
Proof: Let G is finite group.

Step:1 For any a € G Define a function

fa:G— Gby fp(x) =ax forallx €EG
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To show that f; is both one-one and onto function
[)f . is one-one : Forall x,y € G f, (x)= f, (v)
= ax = ay = x =y ( by cancellation law)
ii) f, is onto: for all y € G(image) 3 x € G such that
y=f(x)=y=ax=>x=alyeG.
Therefore f, is a permutation.
Step-2 To collect all such permutations G' = { f,:a € G }
To show that G’ 1s a Group wrt composition of functions.
1.Closure property: forall f,,f, € G’ then
(fa o)) = falfo ()] =fa (bx) =fo () = ay = a(bx) = (ab)x = fap(x)
= fafo=fa €G’
2)Associate property: Forall f,.f,.f; € G’ then
[fa(fo f] = [ fa(foc )]
= fa(bcj]
=[ fian)c]
=[ flanyfc]
=[ (fafo) fel-
Therefore [ fo(fy f)] =[ (fafo) fe]

3)Identity property: for all f;, € G' 3 a pemutation f, (since e € G) such that

fafe = fae = faand fofq = foa = fa-

Identity element exist.
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4) Inverse Property: forall £, € G' 3 a pemutation f,-1 € G' (since a ! € G)

such that
fafa=* = faa— = feand fo-1fa = fa2a = fe-
~forall f, € G weget fo-» €G'
Inverse property exists.
Hence G’ 1s a group and 1s permutation group.

Step:3 Finally to show that G’ = G

Define a function ¢: G — G' by @(a) = f, foralla€ G
l.pisone —one :Foralla.beE G

Letp(a) =@(B) = fo= fp = fa(x) =f(x) > ax=bx=>a=Db

2. @ is onto: forall f; in G’ there exist a € G such that ¢(a) = f.

3. @ is homomorphism: Foralla, b€ G

¢(ab) = fap = fafo = @(a) (b)

(@ is one — one, onto and homomorphism and hence Isomorphism

111ff=(12345876)andg=(4 156 7 3 2 8) then show that

(fg)* =g 'f"
Solution: Giventhatf=(1 23 458 76)andg=(4 1567 32 8)

: — 123458?6) =(4156?328)
That is f (23458761 g 15673284

678

876)(4156?328): 123 15?3

o 345
Now fg 23458 761/\15673284 821

[= 20 =

1 _(82164573y_ (12345678
(fg) _(123456?3)_(32856471)
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: —1=(23453?51] —1=(156?3284)
Al&ﬂf 12345876 ﬂﬂdg 41567328

g—1f—1: 155?3284)(23455?61)_(123455?8)

1567328/\12345876/ 32856471

Hence (fg)™* = g7 f !

12.State Cayley’s theorem for permutation group and if
G={1,-1,1,-}is a group find all the regular permutations of G.
Solution: Given G = {1, -1, i, -i } By Cayley’s theorem fy(x ) = ax forallx €G
Now the regular permutations are { fy , f-1fif-i } were
(1 -1 Q=i Y_1-1i-i
f _(1.1 1(-1) 1(i) 1(-:']) _(1 -1 -:')

fon =51 57) A=GEa7) ond fog= (7 ) siei® =t and -2 =1

&&&E&EEEE&EEE
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GOVERNMENT DEGREE COLLEGE:: RAVULAPALEM

(An outcome based Institution since 1981 Affiliated to =
Adikavi Nannaya University)
East Godavari District, ANDHRA PRADESH, INDIA 533 238
RING THEORY

By B. Srinivas Rao. Lecturer in Mathematics.

RINGS-I

UNIT-1
Definition of Ring and basic properties, Boolean Rings, divisors of zero and cancellation

laws Rings, Integral Domains, Division Ring and Fields, The characteristic of a ring - The
characteristic of an Integral Domain, The characteristic of a Field. Sub Rings, Ideals

Definition (Ring).

A non-empty ser R is said to be a ring w.r.t two binary operations (+) and multiplication(.) if it
satisfies the following properties

I.R is an abelian group under addition

(1). Foralla,b ERthena+b €R (Closure)
(2) (Associativity) Foralla,bandcinR, (a+b)+c=a+(b+c).
(3) For any a €R There is an element 0 € R(identity) such thatforallainR a+0=0+a=a.
(4) Forall ainR, there exists b € Rsuch that a+ b=b +a=0. b will be denoted -a.
(5) ForallaandbinR,a+b=b+a.
Il Semi-Group w r t Multiplication.
(6) Foralla,b €Rthena.b €R
(7) Foralla,bandcinR, (a:-b)-c=a-(b:c).
lll (8) (Distributivity Properties)
Foralla,bandcinR,wehave a:-(b+c)=a-b+a-c (LeftDistributive law)
(b+c)-a=b-a+c-a (RightDistributive Law)

Example: The set of Integers Z = { } is a Ring w r t Addition and
multiplication.

Example: The set of Rationales Q={p/q : p,q € Z,q # 0 }isalso Ring w r t Addition and
multiplication.

General properties on rings:
Let R is a ring then prove that for all a, b, c € R then

1.a0 =0=0a 2.a(-b) =—=(ab) = (—a)b
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3.(—a)(=b)=ab4.a(b — c) =ab- ac
Proof:1.Asa0 = a(0 + 0)=a0 + a0 (va(b+c)=ab+acinR)

~a0=a0 4+ a0

=a0 + a0 va=a+ 0inR

= 0=2a0 - By cancellation.

Similarly,to prove0a = 0

2.As0 = a0 = a[b + (=b)] = ab + a(—b)

20 =ab + a(=b)—(1)

Again0 = a0 = a[(—b) + b]
2 0=a(-b)+ ab
From (1) and(2) ab + a(-b) =0 = a(—b) + ab
= a(-b) =—(ab)
Similarly to prove (—a)b = — (ab).
= —(ax) wherex = —band ~ (—a)b= —(ab)

= —[a (=b)]
= —[=(@b)](~ a(=b) =—(ab)

3. (=a)(=b) =(-a)x

=ab
4.a(b—-c)=alb+ (—c)]=ab +a(—c)(~ byleftdistributive law )

=ab-ac.

Definition: ( Zero divisors)
Anon zero elementa # 0 € R is said to be zero divisor if

3b#0 € Rsuchthatab = 0.

Example: Inthe ring of 2 X 2 matrices R
110 [0 0 _ [0 0]_
A=y JroB=[; 3] #0suchthatap= | ]=0

= A and B are Zero divisors.

Definition: (Without Zero divisors):
InaringRforanya, b €Rifab=0= either a= or b=0 then we say a, b are without zero

divisors.or if a # 0 and bz 0 thena b # 0 in the ring R.

Example: In the ring of integers Zforanya=5#0, b=8#0 thenab=5x8=40=0.

BSR MATHS GDC RVP




Definition (Integral domain) :

Aring < D,+,.> issaid to be an Integral domain if it satisfies
1. Unity(1 € D)
2. Commutative w r t multiplicationieab = ba foralla,b € D
3.Without zero devisors property ie for alla,b € Dif ab = 0then

a=0o0rb =0.0rifa®0,b#+0then ab # 0foralla,b € D

Example: 1.The ring of Integers Z = { -3,-2,-1,0,1,2,3,} form an Integral domain .

Example: 2.The ring of rational Q ,The ring of Reals R are also Integral domains.

Definition (Field) :

Aring < F,+,.> issaid to be a Field if it satisfies
1. Unity(1 € D)

2. Commutative wrt multiplicationieab =ba foralla,b € D
3. Multiplicative Inverse Property for alla # 0 € F there exist a'€ F such that

aal=1=a'a.
Example:

1.The ring of Integers Z = { }is not a field since multiplicative

inverse property does not exist. Since fora=3 € Zthena™! = é &7

2. The ring of rational Q , The ring of Real numbers R are Fields and the ring of Complex

numbers form a field ie{x + iy /x,y € Randi = v—-1}.

Division Ring or Skew field:
Aring < R,+,.> issaid to be a skew Field if it satisfies

1.Unity (1 €R)

1

2.Multiplicative Inverse Property for all a #0 € F there exist a € R such that a.a® =1 = ala.

Example: The ring of Non-singular matrices forms a skew field
Boolean Ring: A Ring R is Said to be a Boolean Ring if it satisfies Idempotent property

That is forall a € Rthena? =a

Theorem:

Prove that in a ring R without zero divisors if and only if cancellation laws.
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Proof: = part
Let R has without zero divisors to find cancellation laws
Foranya #0,b,c € R
Ifab = ac = b =c (Left cancellation law)

If ba = ca = b = c (Right cancellation law)

Ifab =ac = ab —ac =0

=>a(b—-c¢)=0
By Without Zero Divisors Property

Eithera = 0orb — ¢ =0 buta #0.. b-c =

Similarly to prove Right cancellation law.

< Part
Suppose cancellation laws holds in the ring R.

To find without zero divisors property

foranya,b€ RLetab = Oanda # 0,b # 0.
= ab = a0 = b=0(~ byLeft cancellation law )
But b # 0 it is a contradiction
~a=0o0rb =0.
Theorem:

Prove that every field is an integral domain . also show that using an example converse is not true

Poof: Suppose F is a field ie It is a ring having
1. Commutative,
2.unity and
3. Multiplicative inverse property

’

To show that F is an Integral domain That is only to find without zero divisors property in F.

ieForalla,b € Fifab =0 = a = 0orb = 0.
Case —1letab =0anda # 0 € F(~ a # 0 € F(field) >a™! € F)

= al(ab) =al0=0

= (ala)b =0

= (1)b=0
= b =0.
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Case —2letab =0andb # 0 € F (“bz0 EF(field=bleF)
= (ab)bl=0b1=0
=abbl)=0
=a(1)=0
~Foralla,beFifab=0=>a=0o0orb=0

Hence F is an integral domain.

Example: The ring of Integers Z = { } is an integral domain but
not a field sincemultiplicative inverse property does not exist. Since for a= 3 € Z then a'=1/3

isnotinZ

Theorem : Prove that every finite Integral domain is a Field.

Proof: Suppose D = {@1, Gz, Gz, ... An} where a; # a; fori # j

is a finite Integral domain containing exactly n elements
Therefore,D is a ring having Unity Commutative and Without zero devisors property
To Show that D is a field ie only to find the Multiplicative Inverse Property.
ie for all a# 0 € D there exista™ € D such that a.al=1=a"a.
Consideraset aD={ aay,aaz,a a3 ,aan } isalso contained in D (- Closure in D)
Sinceforaai =aaj  fori # j
= aai-aaj =0 fori #j

= aai-aj) =0 fori #j

= a=0or(ai- Cl]) = 0fori #j ((oy Without zero devisors property)

Buta #0 =~ (ai-aj)= 0fori # j
= ai =aj fori # jsince (1)
~ a D and D containing exactly n elements = aD = D,butl1 € D = 1 € aD
By the definition of a D 3 ax € D such that 1 = aax = aga
It follows Ak isthe inverse of a € D Inverse property exist
Hence D is a Field.
Exa mple: Let D ={ 1,w, w? }is a finite group wrt multiplication
ThenDw ={ 1l.w,w.w, 0w } ={w,w?,w} ={w,w?,1} =D

" Dw=D ButleD=21eDw =21=w?2w = w? isthelnverseof w
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Theorem: InaringRforalla€ R, a?=a (idempotentlaw), prove that
lL.a+a=20 foralla € R
2.ifa+ b = othena = b foralla,b € R
3. R is a commutative ring.
Proof: 1. foralla € R=>foralla,a€ER=>a+a ER
Leta+a=x €R
By idempotent property  x2=x

=>(a+a)?=a+a

= (a+a)(a+a)=a+ a
>a(a+a)+a(a+a)=a+ a

> a’+a’+a’ +a’=a+a.
>a+at+a+a=a+a+0 (+ foralla€e R,a’=a)
= a + a = 0(~ Cancellation law)
2Givena+b =0=a+a(~* a+a=0)
=>b=aiea=»

2. Ris a commutative ring.
foralla,beR=a+b€ER
leta + b = x€R

By idempotent property x2=x

=(a + b)?=a + b
=>(a + b)(a+b)=a + b.
>a(a+b)+ b(a+b)=a+ b
= a’+ab + ba +b’=a + b.
>a+ab+ba+b=a+b (« forallaeR,a’=a)
= ab + ba = 0(~ cancellation law)
= ab =ba(~ ifa+ b = othena = b)
Problem:

Show thatR = {a + bvV2: ab € Q } form a field with respect to addition and multiplication.

Solution: GivenR={a + bV2: ab € Q }to show that R is field using Q is a

field.1forallx = a1 +hiv2 y = a, + b;V2in R then

x+y=(ar+bV2) + (ar +bV2)
=(ai+a)+ (bi+by)V2
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=a’+b'V2€R wherea’=(ai+a;),b’=(bi+by) €Q
xy = (a1 +b1V/2)( a2 +bV/2)

=(a;a;+2bs b))+ (a1 b+ blaz)\/E
=a” +b"V2 €Rwherea” =(a1a,+2 biby) b” =(a1b,+ biax) €Q

Closure property holds w r t addition and multiplication

2.A) For all x = a +bv2 € R there is an element 0 =0+ 0vV2 € R (+ 0 € Q) Such that

x+0:(a+b\/2)+(O+O\/2)=(a+0)+(b+0)\/_2 = (a+hv2) =x

0+x=(0+0vV2)+ (a+b\/2):(0+a)+_(0+b)\/_2 =(a+hv2) =x
» 0=0+0V2 € Ris the Identity wrt addition
B) for all x=a +bV2 € Rthere isanelement 1=1+0vV2 € R (~ 1,0€ Q)
Such that x .1 = (a+bv2)(1+0v2)=(al)+ (b+0)V2=(a+hv2)=x
1.x = (1+0v2) (a+bv2)=(1la)+(0+b)vV2
=(a+hvV2)=x

~ 1=1+0V2 € R is the Identity wrt Multiplication
3.A)forall x=a+bv2 € Rthereisan element—x =-a+ (-b) V2R (= forall a€ Q= -a € Q)
Suchthatx + (-x) = (a+bv2) + [-a+ (-b)V2] =[a+ (-a) ]+ [b + (-b) ] V2
=(0+0+2)=0
(0 +x=[-a+ (D) V2] +(a+bV2)= [(4) +a) + [(-h) + b )V2]
=(0+0v2)=0
-x =-a+ (-b) V2 € Ristheinverse of xw r taddition
B) for all x= a +bv2 € R 3 an element

xt = (a+bv2)?

- 1 xa—b\/Z _a-bV2 _ @ 4+ (-b) ) ]
TTDV2 asbV2 2B 22 a2_2b? V2 € Riis the inverse

: —b
element of X €R since —2__ € Q and b)
aZ—2b? a2—2b2

€Q
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4) As R contain all Real numbers but the set of all real numbers form a field and hence the remaining
properties of the field are all existin R

ie Associative, Commutative and Distributive laws wrt addition and multiplication are exist.

<R, + .>isafield
Problem:

Show thatR={a +bV2:a, b€z } form an Integral domain with respect to addition and
multiplication.

Solution: Given R={a +bV2 :a, b € Z } to show that R is an Integral domain using Z is Integral
domain.

1.A) for all x = a3 +b1V/2 y=a; +b,V2 in R then
x+y=(a1+b1V2) + (a2 +b2V/2)
=(ar+a2 )+ (b1 +b2) V2
=a’+b'V2€R wherea’ =(ai+a;),b’=(bi+by)EZ
B) xy = (a1 +b1V2)( a2 +b2V/2)
=(a1a2+2b1by) + (a1 b+ b1ar) V2
=a”+b"V2 €R wherea” =(a1a,+2 by by), b’ =(arby+bray) €Z
Closure property holds wrt addition and multiplication
2.A) Forall x =a +bv2 € R there isan element 0 =0 + 0V2 € R (= 0 € Z) Such that
Xx+0=(a+hyV2)+ (0+0v2)=(a+t0)+ (b+0) V2
=(a+bhv2)=x
0+x=(0+0v2)+ (a+bv2)=(0+a)+(0+b)V2
=(a+bv2) =x
= 0=0+0V2 € Ris the Identity wrt addition
B) for all x=a +bv2 € R there isan element 1=1+0vV2 € R (= 1,0 € Z) Such that
x.1=(a+bvV2)(1+0v2)=(al)+(b+0)V2
=(a+bvV2)=x

and 1. x= (1+0v2) (a+bv2)=(1a)+ (0+b)V2

= (a+bv2) =x

~ 1=1+0V2€Risthe Identity wrt Multiplication.
3.A) forall x =a+ bv2 € R there isanelement—x =-a+ (-b)V2 € R (~ forall ac Z=-a € 2)

Such that x + (-x) = (a+bv2 ) + [-a+ (-b)V2] =[a+ (-a) ]+ [b+ (-b) ] V2
=(0+0+v2)=0
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(-X) + x = [—a + (=b)V2] + (a+bv2)=[(-a)+ a) + [( -b)+ b )V2]
=(0+0v/2)=0

-x = -a+ (-b)V2 € Ris the inverse of x w r t addition

B) Without zero divisors property: For all x =a; +b;vV2 y = a, +b,v/2 in R then
ifxy=0
=(a; +b1V2)(az +b2vV2) =0
= (a1a;+2b; b)) + (aib,+bra) V2= 0402
= (aijaz+2bi1b2) =0 and (a1 bz+byaz) =0.
Buta;, a;, b;,b; are positive integers
= a;a;=0, bi1b,=0
= a; =0 ora;=0, by=0 orb,=0 .

=(a; +b1V2)=0+0+/2, or (az+bxV2)=0+0v2

= x = 0 or y = 0. Without zero divisors property exist.

4) As R contain all Real numbers but the set of all real numbers form an Integral domain and hence
the remaining properties of the integral domain are all existin R

ie Associative, Commutative and Distributive laws wrt addition and multiplication are exist.
Therefore < R,+,.> is an Integral domain. But it not a field

1 3-4V2 _ 3-4V2
3+4v2  3-4vZ  9-32

Since forany x = 3 + 4v2 € Rthenx™! =

== +2VZ gR v, 2 ¢Z

-21 21 21
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Problem:

Show that the set of Gaussian Integers J(i) = {a + ib: a,b € Z }form an Integral domain
withrespect to addition and multiplication.

Solution: Given J(i) = {a + ib:a,b € Z }toshow that /(i) isan Integral domain usingZ is
Integraldomain.

1.A)forallx=ai +1by y=a,+ I byin J(i)
thenx +y =(a;+iby) +(ax+iby)

=(ar+az)+i(bi+by)

=a'+ib’€ J(i) wherea’ =(ai+a;),b’ =(byi+b,) €Z

B) xy=(a1+ibi)(az +iby) =(ai1a2+2 b1 by) +i( a1 ba+b;say)

=a”+ ib"”" €J(i) wherea” =(a1a,+2 b1 by), b’ =(a1b,+bia,) €EZ
Closure property holds wrt addition and multiplication
2.A) Forallx=a+ibeJ(i) thereisanelement0=0+0vV2€J(i)(~ 0 €Z)Such that
x+0=(a+ib)+(0+i0)=(a+0)+i(b+0)
=(a+ib) =x
O+x=(0+i0)+ (a+ib)=(0+a)+ i(0+b)
=(a+ib) =x
~ 0 =0+ i0 € J(i)istheldentity wrt addition
B) Forallx=a+ib €J(i)thereisanelement1=1+ i0€J(i) (~ 1,0 €Z) Such that
x.1=(a+ib)(1+i0)=(al)+i(b+0)
=(a+ib)=x
and1.x = (1+i0)(a+ib)=(1.a)+ i(0+b)
=(a+ib) =x
~ 1 =14 i0 € J(i) is the Identity( unity) wrt Multiplication
3.A)forallx=a+ib €J(i)thereisanelement—x=-a+i(-b)€J(i)(~foralla€eZ=-a€?Z)
Suchthatx + (—=x) = (a + ib) + [-a + i(=b)] = [a + (—a) ]+ i[b + (D) ]
=(0+i0) =0
(—x) +x =[-a+i(-b)]+ (a+ib)=[(—a)+ a) + i[(-b)+ b]
=(0+i0)=0

—x = —a + i(—=b) € J(i)istheinverse of x wr t addition
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B) Without zero divisors property: Forallx=a; + iby y=ax+ ibyinJ(i) then
if xy=0
=(a1+ ib1)(a2+iby)=0
= (araz- biby))+i(aiby+bia;) =0+ i0
= (a;az-biby)=0 and(a; ba+b;sa;) =0.Squaring on both sides
(azaz-biby)*=0and (a1 ba+bray)> =0  Adding we get

= (a1 a2+ bi?b?) + (ai? by 2+ bs?a?) =0
= (a1 a’+ bi?by?)=0and (a1 b2+ bi?a,?) =0 But ai,az,b1, bz are positive integers
= a;?a’=0,and bi?by?=
= a;=0o0ra;=0, b;=0 orb,=0 .

= (a1 + ib1) = 0+ i0,0r (az + ib2) = 0 + i0=x =0 or y = 0. Without zero divisors property
exist.

4) As J(i) contain all Complex numbers but the set of all complex numbers form an Integral

domainand hence the remaining properties of the integral domain are all exist in J(i)
ie Associative, Commutative and Distributive laws wrt addition and multiplication are exist.

<J(i), +, . >is Integral domain .

2-3i

. . . . . 1
But It is not a field since forx =2 + 3i € J(i) thenx ™ = x
2431 2-3i

2-3i 2 3 2 3
= = _ - 1 H _$Zand_$Z
PP 3\/2$J(I) since o
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Characteristic of a ring

Definition: Let R is a ring a least positive integer n is said to be the characteristic of the ring if for all
a ERthen a +a + a+...ntimes = na =0

Example: In the ring of additive modulo 6

Zs = {0,1,2,3,4,5}
6(1) =0,6(2) = 0,6(3) =0,6(4) =0,6(5) =0
The characteristic of Zs is 6
Theorem: Prove that the characteristic of an integral domain is either 0 or prime number.
Proof: Suppose D is an Integral domain.
For any a#0 € D and o(a) =0 then the characteristic of D is zero.
If o(a) = p # 0 where p is least positive integer then to show that p is prime number.
Suppose p is not prime number ie it is composite number
Letp=pi1p2 WhereO<pi<pandO<p><p
As az0€ED=>a’#20€D
Also o(a)=p = o(a?)=p
>p(a%) =0
= pip2(aa)=0
=(p1a)(p22)=0
= (p1a)=0or (p2a)=0
=o0(a)=p1 oro(a)=p2 butO<pi<pandO<p<p.
But o(a) = p # 0 where p is least positive integer. Itis contradiction

The characteristic of Ris prime.
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SUBRINGS

Definition: A non-empty sub set S of a ring R is said to be a sub ring of R if S itself is

a ring wrtaddition and multiplication that is S satisfies all the properties (8 proprieties) of

the ring R.

Example: 1. The set of Even Integers
} and the multiples of 3 i.e.

} etc are the subrings of Ring of Integers Z.

Example: 2. The ring of Integers Z is a subring of ring of Rationales Q

Theorem: (Necessary and sufficient condition for sub ring of a Ring)
Statement: A non-empty subset S of a ring R to be a subring iff
i)Foralla,beS= a—-beS
i) Foralla,beS=abeS.
Proof: = Part: Suppose S is a subring of the ring R
i)Foralla,beS=>aeS,beS=aeS,-beS (Sisasubring)
=a+(-b) eS (closureinS)
=>a-beS
i)foralla,be S=>aeS,beS=abeS (closure wrt.)
& Part: Suppose Sis a non-empty sub set of ring R
andi)Foralla,beS= a-beS
i) Foralla,be S=abeS. Toshow that S is a subring of R.
lForallaeS=>a,aeS=a-aeS(~from)
= 0 € S Additive Identity element exist in S.

1.AsOeS ForallbeS = 0-beS (~from(i))
=>-bheSsS

Additive inverse exist .
2.Foralla,beS= aeS,beS=aeS,-beS(~from(A))

=a—(-b)eS (~ from(i))
=a+beS.

Closure w r t addition exist.
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3.From (ii) Foralla,b e S= ab e S. Closure Property w r t multiplication exist.

As S € R the remaining properties of the ring are all exist in S.

Hence S is a sub ring of R

Theorem:
Prove that the intersection of two subrings is a subring of the Ring R
Proof: LetS; and S, are two subrings of the ring R.
To show that S; N S;is also subring of R.
1) AsS;andS; are two subrings of the ring R by Identity property
0€Si1and0 €S, =0 €S1NS;
= S1NS;is non-empty sub set of R
2)i)Foralla,beSiNnS;,=>a-bes; NS,
Foralla,b€SiNS,=>a,b€eS;anda,b€ES,
=>a-beS;anda-b €S, ( sinceS;andS;are subrings of R)
=>a-beSINS;
ii)Foralla,beS; NS, >ab€eS; NS,
Foralla,o€SinS;,=>ab€ESianda,b €S,
But Let S; and S; are subrings of the ring R
ab€Siandab €S,
=>abesS;inS;

Hence S1 N S, is subring of R

Problem :Show that the union of two sub rings of a ring R is not a subring of R

using an example.

Solution: Let 51 ={ -4,-2,0,2,4,....}and S> ={
are subrings of the ring of Integers Z ,but it’s union

le S1US>={ -6,-4,-3,-2,0,2,3,4,6, } not subring of Z

Sincefora=3,b=4€5:USthena+b=3+4=7€&51US>

Theorem: Prove that the union of two subrings is a subring of a ring R if and only if one is contained

in other.
Proof: Let S; and S;are two subrings of the ring R To prove that
SiUS;isasubring& S; €S,0rS; €54
<=Part LetS;and S;are two subrings of the ringRand S; €S,0rS; €Sy

To show that S;US; subring
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IfS1 €S, = S:US; =S, subring of RIf S; ©€S; = S;US; =S; subring of R

= Part letS;andS; subringsand S;U S; is a sub ring

ToshowthatSi1 €S, or S, €5
IfS1 €S, = Forall aeS; ¢S, =>a€S; butaéS,..(1)
If S; #S1= Forb€S, &S;1 =>b €S, butbgs;
a€ES bES, @a,be SUS,
But S;US; isasubring ~a+beS;US;

= a+beS;oratbes; (3)

From(1)and(3) a€S; a+beS;=>-aeS; (subring)a+bes;
= -a+(a+b)eS; (Closure propertyinS;)
= beS; Itisacontradiction to (2)
From(2)and (3)beS;a+b eS,;=-beS; (subring)a+bes;
=-b+(a+b)eS; (Closurepropertyins,)
= a€e S, Itisa contradiction to (1)

51 c Sz or Sz c 51

Theorem: Prove that an arbitrary intersection of subrings of a ring R is a subring of the ring R.
Proof: suppose S ={S; : i € I }is arbitrary collection of subrings of the ring R .

To show that N;¢; S; is also a subring of R.

1.Ng; S; isnon —emty: As S; foralli €1 is asubring of R

by Identity property 0 € S; foralli €1
=0€NierSi = NierSi ¢
2.Foralla, b€ NigS; =>a— b E NS
AsForalla, b € NigS; = Foralla,be S; foralli €l
As S; foralli €l isasubring of R

=2>a—beS; foralli€el
=>a— bEﬂielsi.

3.Foralla,b € NiS; = ab € NS
AsForalla, b € NijgS; = Foralla,be §; foralli €l

As S; foralli €l is asubring of R
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=>abes; foralliel
>abe ﬂiEISi.

Hence an arbitrary intersection of subrings of a ring R is a subring of the ring R

IDEALS
Definition : (Right Ideal)
A non-empty sub set S of aring R is said to be Right Ideal if it satisfies the following conditions
1) Foralla,beS=>a-bES.
2)ForallrER,seES= sres.
Definition : ( Left Ideal)
A non-empty sub set S of aring Ris said to be Left Ideal if it satisfies the following conditions
1) Foralla,beES=>a-beES.
2)ForallrER,sES=>rs€ES.
Definition : (Ideal)
A non-empty sub set S of aring R is said to be an Ideal if it satisfies the following conditions
1) Foralla,beS=>a-beS.

2)ForallréER,seS=>rs€E€S and sreSs.

Example:
The set of even integers S = 27 = { —-6,—4,-2,0,2,4,6, ... .....} isan
Ideal of Ring of IntegersZ = { —4,-3,-2,-1,0,1,2,34, .......}
Since 1)fora=4,b=6thena-b=4-6=-2 € S

2)forr=5€R,s=4€Sthenrs=5%x4=20€S

Note: The ring of integers Z is not an ideal of ring of Rationales Q.
Sinceforr=3/5€ Qands=4 € Zthensr=4.(3/5)=12/5notinZ.

Theorem:

Prove that the intersection of two Ideals is an Ideal of the Ring R .

Proof: Let S1 and S; are two Ideals of the ring R.
To show that S; N Sy is also an Ideal of R .
1) AsSiandS; are two Ideals of the ring R by Identity property
0€Siand0 €S, =0 €S1NS,

= S1 N Sy is non-empty sub set of R
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1) Foralla,beES1NS;=a-beSiNS;
Foralla,b€SiNnS;=a,b€&€S;anda,b €S,
=a-b€E€Sianda-b €S, ( ~SiandS;are Ideals)
=a-besinNs;

2)ForallrER,s€S1NS;=rseSiNS;and sreES1 NS,
ForallreR,s€S1NS;,=>reR,seS1ands €S,
But Let S1and S; are Ideals of the ring R
rs€Siandsr €Siandrs€ S; andsr € S,
=>rseSiNSand sreES1INS,

Hence S1 N'S; is also an Ideal of R.

Theorem:
Prove that the union of two Ideals is an Ideal of aring R if and only if
one is contained in other .

Proof: Let S1 and S; are two Ideals of the ring R To prove that
SiU Sz isanldeal © S1 €S, 0rS$; € S;

&< Part

Let S; and S; are two ideals of theringRand S1 €S,0rS; €51

To show that S;US is an ideal of R

IfS1 €S, 2 S1US, =S, ideal of R
If S; €S1 = S:US; =S;ideal of R

S1US; is an Ideal of R

= Part
let S1and Sz ideals and SiU S; is anideal of R
ToshowthatS1 €SS, orS; ©S; supposeS1 & S;and S, & Sy
IfS1 &S, = Forall a€S; &S, =>a€S; butaé S;---- (1)
If S; €S1= Forb€S; €S;1 =>b€E€S; butb&S:
aESib€ES;, =a,beSiUS,;
But S1:US; is an Ideal of R

~a+besSiUS;
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= a+beSoratbhes
From (1)and (3) a€S; a+beS;=-a€S; (Ideal)a+bes;
= -a+(a+b)eSi (Closure property in S1)

= be$S; | tis a contradiction to (2)

From(2)and 3)b € S, a + b €S, > —b €85, (Ideal)a + b €,
=-b+(a+b)eS, (Closure property inS;)
= a €S, Itisacontradiction to (1)

“S51E€S0rS €S,

Example: Show that the set of 2x2 Matrices

s—{(5 :er ez}

is Subring but neither right Ideal nor left ideal of R ring of 22 Matrices.
Seolution:

(4] (8]
For all A = ( Q{]L bl) B = Ez bz) in S then

. % 0 L] 0 ) _ ( iy — Qo 0 ) .
IJA_B—(D bl)_(ﬂ ba) ™~ ) By — by ) B3
. _f 21 o g 0 ) _( g da 4] ) .
iiAB —( o E’L) ( o P o by bo in 5.
5 is a subring of R.

Forall X = {; i) inRandA =(g g) then
XA = {; ﬁj (g g) = (;Z 3;3) isnotin 5.

AX=|:E g) (; ﬁ) =(g;; g;) is not in S.

Hence 5 is Subring but neither right Ideal nor left ideal

Result: Let S is an ideal of a ring R with unity then prove that if 1 €S then prove that S = R.

Proof : Given Sis an ideal of a ring R with unity.
Clearly SCSR

Toshowthat RES
Forany r €R given1l €S and Sis an ldeal of R

=>rl1esS >res

(2) from (1) and (2) R=S

Theorem: Prove that every field has no proper ideals.
Proof: Suppose Fis a field to show that the only idealsof Fare { 0 }and F.

Assume that Sis an ideal of Fand S # { 0 } to show that S=F.
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Clearly Toshowthat FES
Forany a # 0 €SS F =a #0€F andF isaafield
= al€F againa €Sandisidealof R = aa? €S
= 1 €S andSisanldeal of R foranyr €F
= rleS=reS

from (1) and (2) F=S

Al the best
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