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            GROUP THEORY 

             
 

              UNIT-1 GROUPS 

            B. SRINIVASARAO. LECTURER IN MATHS. GDC. RVPM.KONASEEMA 

UNIT – 1: Syllabus 

 
Binary Operation – Algebraic structure – semi group-monoid – Group definition and 

elementary properties Finite and Infinite groups – examples – order of a group. Composition tables 

with examples. 

   Sets Relations  

    Definition (Set): A set is a collection of well-defined objects. 

    Examples:1   A = {1,2,3,4,5,6,7,}       B = { a, b , c, d } are sets 

    Example:2 Collection of Mathematics books in the college library. 

  Example:3 Collection of those students in your college who secured more than 80%  of marks   

                      in Annual examination. 

 

Number system: The following sets are defined as: 

1.The set of Natural numbers are defined by N = {1,2,3,4, … … … . . , 𝑛, 𝑛 + 1, … . . } 

2.The set of Integers are defined by Z = {… … … … … − 3, −2, −1,0,1,2,3, … … … … } 

3.The set of rational numbers are defined by  Q = {  
𝑝

𝑞
: 𝑝, 𝑞 ∈ 𝑍, 𝑞 ≠ 0 } 

4.The set of Irrational numbers are R - Q = { √2, √3, √5, … . . 𝜋, … } 

5.The set of Real numbers are the union of set of Rationales and the set of Irrationals. 

                                          i.e.,  𝑹 = 𝑸 ∪ (𝑹 − 𝑸) 

6.The set of complex numbers are defined by ℂ = {𝑥 + 𝑖𝑦 ∶ 𝑥, 𝑦 ∈ 𝑅, 𝑖 = √−1  } 
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  Complex Numbers 

                                                    Real number system 

Non-Empty set: A set A has at least one or more than one element is called a non-empty set 

and is denoted by ≠ϕ. 

    Binary operation: An operation 0 is said to be binary on a non-empty set G if  

 

                                 for all a, b ∊ G                 then a 0 b ∊ G. 

 
     Example: Addition (+) is a binary operation on set of Naturals N but Subtraction (-) is not a      binary 

operation on N. 

   Since for a = 5, b = 9 ∊ N then a + b = 5 + 9 = 14 ∊ N but a - b = 5 – 9 = -4 ∉ N 
 

Algebraic Structure: - 

A non-empty set together with one or more than one binary operation is called an algebraic 

structure. 

Examples: - 

1.(R, +, × ∙) . is an Algebraic Structure where R is set of Real Numbers. 

  2.(N, +) , (Z, +), (Q, +) are algebraic structures but (N, -) (Z, ÷) are not an algebraic  structures 

Example: Division (÷ )  is not a binary operation on Z  

    Since for a = 2, b = 3 ∈ Z but 2 ÷ 3 = 
2

3
 ∉ Z. Therefore < Z, ÷ > is not an Algebraic structure.     

Therefore < Z, ÷ > is not an Algebraic Structure. 

Example: Multiplication is a Binary operation on the set or Rational numbers Q 

                      For 𝒂 =
𝟐

𝟑
   𝒃 =

𝟓

𝟗
 𝒊𝒏 𝑸 𝒕𝒉𝒆𝒏 𝒂. 𝒃 =

𝟐

𝟑
.

𝟓

𝟗
 =

𝟏𝟎

𝟐𝟕
  ∈ 𝑸 

Therefore < Q, × > is an Algebraic Structure 
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Example: Division is a Binary operation on the set or Rational numbers Q                                         Since  

        for 𝒂 =  𝟕/𝟗 , 𝒃 =  𝟖/𝟗 𝒕𝒉𝒆𝒏 𝒂 ÷  𝒃 =  𝟕/𝟗 ÷  𝟖/𝟗 =  𝟕/𝟗 ×  𝟗/𝟖 =  𝟕/𝟖 ∈  𝑸 

         Therefore < Q, ÷ > is an Algebraic Structure. 

Definition (Group): A non-empty set 𝐺 is said to be a Group w r t a Binary operation 0 if it 

satisfies the following properties 

 
  1.Closure Property : ∀ 𝑎, 𝑏 ∈G ⇒  𝑎𝑜𝑏 ∈𝐺. 

 2.Associative Property     : 𝑎 𝑜 ( 𝑏 𝑜 c ) = (𝑎 𝑜 𝑏) 𝑜 𝑐 ∀ 𝑎, 𝑏, 𝑐 ∈ 𝐺 

 3 Identity Properties         : For all a ∈ 𝐺 there exist an element e ∈ 𝐺 such that 

𝑎 𝑜 𝑒 = 𝑒 𝑜 𝑎 = 𝑎   
                                                   ‘ 𝑒 ‘ is called identity w r t the operation o 

 

 4.Inverse Property           : For all a ∈𝐺 there exist an element b ∈ 𝐺 such that 

                                                       a 0 b = e = b 0 a                   

                                         then b is the inverse element of a w r t operation 0 

 

Note:1. In an additive Group the Identity is o (zero) and the multiplicative Identity is 1 (one) 

 

 Note :2. In the Additive Group G the Inverse element of 𝒂  𝑖𝑠 –  𝒂 and in the Multiplicative 

group G   the inverse element of 𝒂  𝒊𝒔  𝒂−𝟏 

Example:   The     set of integers Z = {… … … − 3, −2, −1,0,1,2,3, … … … … } form a group 

                   with respect to addition (+) . 

Solution: Given that   Z = {… … … − 3, −2, −1,0,1,2,3, … … … … } 

1.Closure Property:  

             Clearly the addition of any two integers is also an integer therefore closure law exists. 

             That is for a = 5   b = - 8   in Z   then a + b = 5 + ( -8 )  = -3 ∈  𝑍 

2.Associative property: 

             For any a, b, c  ∈ 𝑍 𝑡ℎ𝑒𝑛 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 

3.Identity Property:  

          For all a ∈ 𝑍 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 0 ∈ 𝑍 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎 + 0 = 𝑎 = 0 + 𝑎   

          and 0 is the additive identity in Z. 
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4.Inverse Property:  

          For all a ∈ 𝑍 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 − 𝑎 ∈ 𝑍 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎 + (−𝑎) = 0 = (−𝑎) + 𝑎   

                     And −𝑎 is the additive Inverse of   𝑎   in Z. 

Groupoid: 

            A non – empty set G is said to be Groupoid wrt to given binary operation o if it satisfies 

Closure law i.e for all 𝑎, 𝑏 ∈ 𝐺 ⇒ 𝑎0𝑏 ∈ 𝐺 

Example: Z= {. . . . . . -3, -2 ,-1, 0, 1, 2, 3 , ......... } is a Groupoid w r t – ( Subtraction). 

 

Semi-Group: 

             A non – empty set G is said to be a semi-group wrt to given Binary operation o if it satisfies    1  .      

Closure      2. Associative laws. 

Example:  

         The set of Natural numbers N = {1,2,3,4, … … … . . , 𝑛, 𝑛 + 1, … . . }is a semi group wrt  

       addition. Since Identity o is not in N. 

Monoid: 

         A non – empty set G is said to be a Monoid wrt to given Binary operation o if it satisfies 1. 

Closure      2. Associative and       3. Identity laws. 

Example: N = {1,2,3,4, … … … . . , 𝑛, … . . } is a Monoid wrt Multiplication.  

         Since Inverse property is not existed in N. for a = 3 then 𝑎−1 = 
1

3
   is not in N. 

 

      Note: The stanard Groups in the Number system are <  Z, + >, <  Q, + >, < Q -{0}, ×> 

 

             < 𝑅, +>,    < 𝑅 − {0}, × >     < C, + > and , < 𝐶 − {0}, ×  > 

Abelian Group:   

𝐴 𝐺𝑟𝑜𝑢𝑝 𝐺 𝑖𝑠 𝑠𝑎𝑖𝑑 𝑡𝑜 𝑏𝑒 𝐴𝑏𝑒𝑙𝑖𝑎𝑛 𝑤 𝑟 𝑡 0 𝑖𝑓 𝑖𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑡ℎ𝑎𝑡 𝑖𝑠    

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 , 𝑏 𝑖𝑛 𝐺 𝑡ℎ𝑒𝑛  𝑎 𝑜 𝑏 =  𝑏 0 𝑎  

 

Theorem: 1 - (Uniqueness of identity) Prove that every group has unique Identity. 

Proof: If possible, suppose that 𝑒 and 𝑒′ are two identity elements in a group 𝐺. 

 

Case-1: Let   𝑒 = Identity and   𝑒′ = element  

                                                                                                                                                 ∴     𝑒 ‘ 𝑒 =  𝑒 ‘ =  𝑒 𝑒 ’ − − − (1)              ( Since 𝑎 𝑒 =  𝑎 =  𝑒 𝑎 ) 

Let 𝑒 ‘ =  𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦   𝑎𝑛𝑑   𝑒 =    𝐸𝑙𝑒𝑚𝑒𝑛𝑡  
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           ∴    𝑒 𝑒 ‘ =  𝑒 =  𝑒 ‘ 𝑒  − − − (2)  

𝐹𝑟𝑜𝑚 (1) 𝑎𝑛𝑑 (2)   𝑒 ‘ =  𝑒 𝑒 ‘ =  𝑒  

∴  𝑒 ‘ =  𝑒  

           𝐻𝑒𝑛𝑐𝑒 𝑡ℎ𝑒 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑢𝑛𝑖𝑞𝑢𝑒.  
 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦: 𝟐 (𝐔𝐧𝐢𝐪𝐮𝐞𝐧𝐞𝐬𝐬 𝐨𝐟 𝐢𝐧𝐯𝐞𝐫𝐬𝐞)  

    𝐏𝐫𝐨𝐯𝐞 𝐭𝐡𝐚𝐭 𝐭𝐡𝐞 𝐢𝐧𝐯𝐞𝐫𝐬𝐞 𝐨𝐟 𝐞𝐚𝐜𝐡 𝐞𝐥𝐞𝐦𝐞𝐧𝐭 𝐨𝐟 𝐚 𝐠𝐫𝐨𝐮𝐩 𝐢𝐬 𝐮𝐧𝐢𝐪𝐮𝐞.  

𝐏𝐫𝐨𝐨𝐟:    For all a ϵ G to show that it has unique inverse. 

Suppose b, c are two inverse elements of a in G 

𝐼𝑓 𝑏 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓  𝑎  𝑤𝑒 𝑔𝑒𝑡   𝑎𝑏 =  𝑒 =  𝑏 𝑎  - - - - (1) 

𝐼𝑓 𝑐 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓  𝑎  𝑤𝑒 𝑔𝑒𝑡    𝑎𝑐 =  𝑒 =  𝑐 𝑎     - - - - (2) 

                       𝑇𝑜 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝑏 =  𝑐  

                              As 𝑏  =  𝑒𝑏( ∵  𝑒 𝑖𝑠 𝑡ℎ𝑒 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 )  

                              =  (𝑐𝑎) 𝑏(∵  𝑓𝑟𝑜𝑚 (2) 𝑒 =  𝑐𝑎 )  

                             =  𝑐(𝑎𝑏) ∵  𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑖𝑛 𝐺  

                             =  𝑐(𝑒) ∵  𝑓𝑟𝑜𝑚 (1)  

                           =  𝑐 ∴      𝑏 =  𝑐 .   𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑢𝑛𝑖𝑞𝑢𝑒. 

 

Theorem:3 (Cancellation laws) 

For any 𝒂 ≠ 𝟎, 𝒃, 𝒄 in a group G. Prove that 

1.If   𝑎 𝑏 = 𝑎 𝑐   ⇒ 𝑏 = 𝑐 ( Left cancellation) 

       2.If   𝑏 𝑎 = 𝑐 𝑎   ⇒ 𝑏 = 𝑐 (Right cancellation)  

Proof:   Let 𝑎 𝑏 = 𝑎 𝑐 
     ⇒    𝑎−1 (a b) =  𝑎−1 (a c) (𝑠𝑖𝑛𝑐𝑒 𝑎 ∈  𝐺 𝑏𝑦 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑙𝑎𝑤 𝑎−1  ∈  𝐺) 

 ⇒ (𝑎−1a) b = (𝑎−1a) c   ( by Associative in G ) 

     ⇒   ( e )b =( e ) c   ( by Inverse property in G) 

                 ⇒ b = c        since e is the identity  

                                                                                                                                            Also, if 𝑏𝑎 = 𝑐𝑎 
⇒ (𝑏𝑎) a-1 = (𝑐𝑎) a-1 (since a ∈ G by inverse law a-1 ∈ G) 

⇒ 𝑏 (𝑎 a-1 ) = 𝑐 ( 𝑎 a-1 ) ( by Associative in G ) 

⇒ 𝑏𝑒 = 𝑐𝑒 ( by Inverse property in G) 

⇒ 𝑏 = 𝑐 

Hence cancellation laws hold in a group G 
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Theorem:4 (Reversion rule) : 

  In a Group G, Prove that ( 𝑎 𝑏 ) −1 = 𝑏 −1 𝑎 −1. for all a, b in G.  

Proof: Let c = 𝑏 −1 𝑎  −1. for all a, b in G 

   Consider c (ab) = b-1 a-1 (ab) 

                                 = b-1( a-1 a)b ( By Associative in G ) 

                                  = b-1(e)b ( By Inverse property in G) 

                                   = b-1 b ( Since e is the identity ) 

                                  = e 

                     ∴ 𝑐 ( 𝑎 𝑏 )  =  𝑒    ----------(1) 

Also (ab)c = (ab) b-1 a-1 

= a (b b-1) a-1 ( By Associative in G ) 

= a (e) a-1 ( By Inverse property in G) 

 = aa-1 (Since e is the identity) 

= e      

(𝑎 𝑏 ) 𝑐 = 𝑒   -------------(2) 

from (1) and (2) 

                  ∴  𝑐(𝑎𝑏)  =  𝑒 =  (𝑎𝑏)𝑐 ⇒  𝑐 = (ab)-1                                                        (     ∵              a     b        =      e        =           b        a                ⇒           b         =         a−1     ) 

                               Hence (𝑎 𝑏) −1 = 𝑏 −1 𝑎 −1 

Theorem:5   Let 𝐺 be a group and 𝑎 ∈ 𝐺 then prove that (𝑎−1)−1 = 𝑎. 

 

Proof: - By the definition of the group G.  

     For all a ∈ 𝐺 by Inverse property in G ∃ 𝑎−1   in G such that      

                          𝑎 𝑎−1 = 𝑒 =  𝑎−1𝑎    ------------(1)                        

     Let b = 𝑎−1  ∈ G by inverse property in G  ∃ an element b -1 ∈ G  such that 

                              𝑏 𝑏−1 = 𝑒 =  𝑏−1𝑏                   But b = 𝑎−1 

            ∴ (𝑎−1) (𝑎−1)−1 = 𝑒 =  (𝑎−1)−1(𝑎−1) --------(2)       

 

From (1) & (2) 𝑎 𝑎−1 = (𝑎−1)
−1

(𝑎−1)  

             Apply Right cancellation to 𝑎−1          We get (𝑎−1)−1 = 𝑎. 
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Theorem: If G is a group and 𝒂, 𝒃 ∈ 𝑮 then the equations 𝒂𝒙 = 𝒃 𝒂𝒏𝒔 𝒚𝒂 = 𝒃 have unique   

                 solutions in G. 

Proof:                      As 𝑎𝑥 = 𝑏 ⇒  𝑎−1(𝑎𝑥) = 𝑎−1𝑏                 (  𝑓𝑜𝑟 𝑎 ∈ 𝐺 ⇒  𝑎−1 ∈ 𝐺 ) 

                                                   ⇒ ( 𝑎−1𝑎)𝑥 =  𝑎−1𝑏                                     (by Associative in G) 

                                                  ⇒ 𝑒 𝑥 =  𝑎−1𝑏                                      

                                                  ⇒  𝑥 =  𝑎−1𝑏        

Now   LHS = 𝑎𝑥 = 𝑎(𝑎−1𝑏 ) = (𝑎𝑎−1)𝑏 = 𝑒𝑏 = 𝑏 𝑅𝐻𝑆             

It follows 𝑥 = 𝑎−1𝑏       is the solution of 𝑎𝑥 = 𝑏  

To show that 𝑥 = 𝑎−1𝑏  is the unique solution of  𝑎𝑥 = 𝑏 

Suppose 𝑥1 𝑎𝑛𝑑 𝑥2 are two such solutions of 𝑎𝑥 = 𝑏 

                                   ∴ 𝑎𝑥1 = 𝑏     𝑎𝑛𝑑    𝑎𝑥2 = 𝑏   

                                             ⇒  𝑎𝑥1 = 𝑎𝑥2  and by left cancellation laws 𝑥1 =   𝑥2 

                        Hence   𝑥 = 𝑎−1𝑏  is the unique solution of  𝑎𝑥 = 𝑏 

       Similarly, to prove that 𝑦𝑎 = 𝑏 ℎ𝑎𝑠 𝑦 = 𝑏𝑎−1 is the unique solution. 

Theorem: If G is a Semigroup and 𝒂, 𝒃 ∈ 𝑮  the equations 𝒂𝒙 = 𝒃 𝒂𝒏𝒅 𝒚𝒂 = 𝒃 have   

                 solutions in G then prove that G is group. 

Proof: Assume that G is a Semigroup 

 Let 𝑎 ∈ 𝐺  ⇒ 𝑎, 𝑎 ∈ 𝐺 𝑎𝑥 = 𝑎 has a solution and 𝑎𝑒 =  𝑎 for some e ∈ 𝐺 

                 Let  𝑎, 𝑏 ∈ 𝐺   𝑦𝑎 = 𝑏 has a solution and 𝑒1𝑎 = 𝑏 for some 𝑒1 ∈ 𝐺 

                 Now 𝑏𝑒 = (𝑒′𝑎)𝑒 = 𝑒′(𝑎𝑒) = 𝑒′𝑎 = 𝑏 

               ∴ 𝑒 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑖𝑛 𝐺 Similarly, to find left identity. 

For a∈ 𝐺 𝑎𝑛𝑑 𝑎, 𝑒 ∈ 𝐺 𝑎𝑥 = 𝑒 ℎ𝑎𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑎𝑦 𝑎′  ⇒ 𝑎𝑎′ = 𝑒 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎′ ∈ 𝐺 

And hence 𝑎′𝑖𝑠 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝑎 𝑖𝑛 𝐺 

                                    Similarly, to find left inverse in G 

                                                  Hence G is a group  
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Problem:1  𝐒𝐡𝐨𝐰 𝐭𝐡𝐚𝐭 𝐆 =  { 𝐚 +  𝐛 √𝟐 ∶  𝐚, 𝐛 ∈  𝐐 } 𝐟𝐨𝐫𝐦 𝐚𝐧 𝐚𝐛𝐞𝐥𝐢𝐚𝐧 𝐠𝐫𝐨𝐮𝐩 𝐰𝐫𝐭 𝐀𝐝𝐝𝐢𝐭𝐢𝐨𝐧 . 

 

Solution: Given G = { a + b √2 : a, b ∈ Q } 

To show that < G, + > form an abelian group. 

 

1.Closure property: ∀ x = a1 + b1 √2 y = a2 + b2 √2 ∈ G then    

                                                                                                                                                           x + y = (a1 + b1 √2 ) +( a2 + b2 √2 ) = (a1+ a) + (b1 + b2) √2 

= a’ +b’√2 ∈ G where a’ =  ( a1 +  a2 ) and b’=( b1 + b2) ∈ Q              Closure property holds. 

2.Associative property: Since all the elements in G are all Real numbers and < R, + > is an Abelian Group.            

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 ℎ𝑜𝑙𝑑𝑠 𝑖𝑛 𝐺 . 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 

                                      𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) =  (𝑥 𝑜 𝑦)𝑜 𝑧            ∀ 𝑥, 𝑦, 𝑧 ∈  𝐺 

 

Problem:2. 

            Show that the set of integers Z form a Group w r t the operation * defined by    

                                                                                                                                                                                                                                                                   𝒂 ∗  𝒃 = 𝒂 +  𝒃 − 𝟏 for all a, b in Z 

 

Solution: To show that <  𝑍,∗  >  form a Group 

1. Closure Property: For all a, b ∈ Z ⇒ a + b ∈ Z and -1 ∈ Z 

⇒ a + b + (-1) ∈ Z 

 ⇒   a + b -1 ∈ Z  (Since < Z, + > is a group ) 

⇒ 𝑎 ∗  𝑏 ∈ Z. 
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2. Associative Property: For all a, b, c ∈ Z then 

To verify 𝑎 ∗  ( 𝑏 ∗  𝑐 )  =  ( 𝑎 ∗  𝑏 ) ∗  𝑐 . 

𝐿𝐻𝑆 =  𝑎 ∗  ( 𝑏 ∗  𝑐 )  =  𝑎 ∗  ( 𝑏 +  𝑐 −  1 )  

=  𝑎 ∗  𝑥        𝑤ℎ𝑒𝑟𝑒 𝑥 =  𝑏 +  𝑐 –  1  

=  𝑎 +  𝑥 –  1  

=  𝑎 +  ( 𝑏 +  𝑐 –  1)  − 1  

 =  𝑎 +  𝑏 +  𝑐 –  2                                                

                                                                                                                                                                                                                                                                                                                                             𝑹𝑯𝑺 =  ( 𝒂 ∗  𝒃 ) ∗  𝒄 =  ( 𝒂 +  𝒃 − 𝟏 )  ∗  𝒄  =  𝒚 ∗  𝒄  where 𝒚 =  𝒂 +  𝒃 −  𝟏 

=  𝑦 +  𝑐 –  1  

 =  ( 𝑎 +  𝑏 − 1)  +  𝑐 –  1  

  =  𝑎 +  𝑏 +  𝑐 –  2  

∴  𝑎 ∗  ( 𝑏 ∗  𝑐 )  =  ( 𝑎 ∗  𝑏 ) ∗  𝑐   

3. Existence of Identity: For all a ∈ Z there is an element e ∈ Z (to find ) such that 

                  𝑎 ∗  𝑒 =  𝑎 =  𝑒 ∗  𝑎  

If 𝑎 ∗  𝑒 = a ⇒ 𝑎 +  𝑒 − 1 =  𝑎 

⇒ 𝑒 − 1 =  0 

⇒ e = 1 ∈ Z    𝑖𝑠 𝑡ℎ𝑒 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑤 𝑟 𝑡  ∗ 

4. Existence of Inverse: For all a ∈ Z there is an element x ∈ Z ( to find ) such that 

               𝑎 ∗  𝑥 =  𝑒 =  𝑥 ∗  𝑎                                         

              If    𝑎 ∗   𝑥 = e  ⇒  𝑎 +  𝑥 − 1 =  1 

⇒ 𝑥 =  2 −  𝑎 ∈ Z is the Inverse element of a w r t ∗ in Z 

<  𝑍,∗ > form a Group. 

 

Problem: 3  𝑺𝒉𝒐𝒘 𝒕𝒉𝒂𝒕 𝒕𝒉𝒆 𝒔𝒆𝒕 𝒐𝒇 𝑹𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓𝒔 

 𝑄 1 = 𝑄 − {1}𝑓𝑜𝑟𝑚 𝑎𝑛 𝑎𝑏𝑒𝑙𝑖𝑎𝑛 𝐺𝑟𝑜𝑢𝑝 𝑤 𝑟 𝑡 𝑡ℎ𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦  

𝑎 ∗  𝑏 =  𝑎 + 𝑏 −  𝑎𝑏 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 , 𝑏 𝑖𝑛 𝑄 1 

Solution: To show that <  𝑄1 ,∗ > form an abelian Group 

                   1.Closure Property: For all a, b ∈ 𝑄1    ⇒ a + b ∈ Q1    and ab ∈ 𝑄1    
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                                          ⇒ a + b ∈ Q1    and   - ab ∈ Q1    

                                                                    ⇒ a + b + (-ab) ∈ Q1              ( Since < Q1,+ > is a group) 

                                                               ⇒ a + b – ab ∈ Q1 

                                       ⇒ 𝑎 ∗  𝑏 ∈  𝑄1 

 

3. Existence of Identity: For all a ∈ Q1 there is an element e ∈ Q1 ( to find ) such that a 𝑎 ∗

 𝑒 =  𝑎 =  𝑒 ∗  𝑎 

If 𝑎 ∗  𝑒 = a ⇒ a + e – a e = a 

⇒ e (1 – a) = 0 

⇒ e = 0 ∈ 𝑄1 is the Identity w r t ∗ 

 

4. Existence of Inverse: For all a ∈ Q1 there is an element x ∈ Z ( to find ) such that a   

                                             𝑎 ∗  𝑥 =  𝑒 =  𝑥 ∗  𝑎 

If 𝑎 ∗  𝑥 = e  ⇒   a + x - a x = 0             ( Since 𝑒  =   0 ) 

⇒ 𝑥( 1 −  𝑎 )  =  −𝑎 

⇒ 𝑥 =  
−𝑎

1−𝑎 
 in Q1 is the Inverse element of a . 

 

5. Commutative property: For all a , b ∈ Q1 then 

         𝑎 ∗  𝑏 =  𝑎 +  𝑏 –  𝑎 𝑏 = 𝑏 +  𝑎 –  𝑏 𝑎 =  𝑏 ∗  𝑎 

<  𝑄1, ∗ >  form an Abelian Group 
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Problem:4      Show that the set of positive rational numbers Q+ form an abelian group w r t a

operation * defined by                 𝑎 ∗ 𝑏 =
𝑎 𝑏

3
        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝑄

+
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  Finite Groups  

 

 Definition: A group having finite number of elements then it is a finite group  

 
Problem:1 Show that the set of cube roots of unity form a group wrt multiplication. 

Solution: We know that the set of cube roots of unity 

G = {1, ω, ω2 } where ω3 = 1.       

            To Construct Multiplication Table For G = {1, ω, ω2 } 

 

 

 

 

        

 

 

 

 

1.Closure property: Using the composition table the multiplication of any two elements in G   

 

             is also in G    𝑇ℎ𝑎𝑡 𝑖𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏  ∈  𝐺 ⇒  𝑎 𝑏 ∈  𝐺. 
 

Closure law exist. 

     2.Associative property: all the elements in G are complex numbers. But the set of     

            complex numbers satisfy associative. 

                                                 ∴ Associative exist in G. 

     3.Existence of Identity: Using the table 

1.1 = 1,  ω. 1= ω and ω2 .1= ω2 “ 1” 

is the identity in G. 

      4.Existence of Inverse: Using the table 

1.1 = 1 ω . ω2 =1 and ω2 . ω = 1 Each 

element in G has inverse in G 

Hence G is a group w r t multiplication. 

 

Problems:2. Show that the set of 4th roots of unity is a Group w r t   multiplication          

{ 𝟏, −𝟏, 𝒊, −𝒊 } 

 form a group wrt multiplication. 

 

 

× 1 𝝎 𝝎𝟐 

1 1 𝜔 𝜔2 

𝝎 𝜔 𝜔2 1 

𝝎𝟐 𝜔2 1 𝜔 
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Solution: Given 𝐺 =  { 1, −1, 𝑖, −𝑖 } where 𝑖2  = −1 𝑎𝑛𝑑  𝑖3 = −𝑖 𝑎𝑛𝑑  𝑖4 = 1  

                                                                                                                                                                                                 To Construct Multiplication Table for G = {1, −1, 𝑖, −𝑖 } 

× 𝟏 −𝟏 𝒊 −𝒊 

𝟏 𝟏 −1 𝑖 −𝑖 

−𝟏 −1 𝟏 −𝑖 𝑖 

𝒊 𝑖 −𝑖 −1 𝟏 

−𝒊 −𝑖 𝑖 𝟏 −1 

 

1. Closure property: Using the composition table the multiplication of any two elements in G is 

also in G   That is for all a, b  ∈ G ⇒ a b ∈ G. Closure law exist. 

2. Associative property: All the elements in G are complex numbers. The set of complex numbers   

satisfies associative.     ∴ Associative exist in G. 

3. Existence of Identity: Using the table 

                         1.1 = 1,      (-1 ) 1= -1 𝑖. 1 =  𝑖 and ( −𝑖 ) . 1 =  −𝑖 

‘ 1’ is the identity in G. 

4. Existence of Inverse: Using the table 

                  1.1 = 1  (−1)(−1) = 1 ,    𝑖(−𝑖 ) = 1 and (−𝑖)(𝑖)  =  1 

    Each element in G has inverse in G 

        Hence G is a group w r t multiplication. 

Problem:3 In a Group G prove that if each element is inverse element of it self then it is 

abelian. 

Solution: Let G is a group and for any 𝑎 ∈ 𝐺 𝑡ℎ𝑒𝑛     𝒂 𝒂 = 𝒆  ⇒ 𝒂 = 𝒂−𝟏 -------(1) 

                And for any 𝑏 ∈ 𝐺 𝑡ℎ𝑒𝑛     𝒃 𝒃 = 𝒆  ⇒ 𝒃 = 𝒃−𝟏 -------(2) 

∴ 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑎, 𝑏 ∈ 𝐺 ⇒ 𝐵𝑦 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑙𝑎𝑤 𝑎𝑏 ∈ 𝐺  

  Let 𝑥 = 𝑎𝑏 ∈ 𝐺 

𝐹𝑟𝑜𝑚 (1)    𝒙 = 𝒙−𝟏  

⇒ 𝑎𝑏 = (𝑎𝑏)−1  

                     ⇒ 𝑎𝑏 = 𝑏−1𝑎−1     

From (1) & (2)   𝑎𝑏 = 𝑏𝑎                 𝑎𝑛𝑑  ℎ𝑒𝑛𝑐𝑒 𝐺 𝑖𝑠 𝐴𝑏𝑒𝑙𝑖𝑎𝑛    
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Problem:  

  Let G is a group then show that for all a, b ∈ G ( 𝒂 𝒃 ) 2 = a 2 b2 if and only if G is abelian. 

Solution: 

⇒ Part    Suppose in a Group G for all a, b ∈ G  

                                       (𝑎𝑏)2  =  𝑎2  𝑏2  

                                         ⇒  ( 𝑎 𝑏 )( 𝑎 𝑏 )  =  ( 𝑎 𝑎)( 𝑏𝑏 )  

                                   ⇒  𝑎 (𝑏 𝑎) 𝑏 =  𝑎( 𝑎 𝑏)𝑏    (∵  𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣 𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)     

                                     ⇒  (𝑏 𝑎) 𝑏 =  ( 𝑎 𝑏)𝑏     ( ∵  𝑏𝑦 𝑙𝑒𝑓𝑡 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 )   

⇒    𝑏 𝑎 =  ( 𝑎 𝑏)       ( ∵  𝑏𝑦 𝑅𝑖𝑔ℎ𝑡 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 ) 

                                           ⇒  𝐺 𝑖𝑠 𝑎𝑏𝑒𝑙𝑖𝑎𝑛.   

⇐ Part 

Let G is abelian group. To show that for all a, b ∈ G ( a b )2 = a2 b2  

                 LHS = ( a b )2                       for all a, b ∈ G 

    = ( 𝑎 𝑏)( 𝑎 𝑏 ) 

  =  𝑎 ( 𝑏 𝑎) 𝑏          ( ∵ Associative ) 

   =  𝑎 ( 𝑎 𝑏 )𝑏             ( ∵ G is abelian group ) 

=  ( 𝑎 𝑎)( 𝑏 𝑏 )  = a2 b2 = RHS 

 
Problem:  

Prove that the set of nth roots of Unity form a group w r t to multiplication of complex numbers. 

  Solution:  𝐿𝑒𝑡     𝑥 = √1
𝑛

  ⇒   𝑥 =   11/𝑛 = (cos 0 + 𝑖 sin 0)1/𝑛   

                                     =  [cos(2𝑘𝜋 + 0) + 𝑖 sin(2𝑘𝜋 + 0)]1/𝑛     𝑓𝑜𝑟 𝑘 = 0,1,2,3, … … ….  

               =  [cos 2𝑘𝜋 + 𝑖 sin 2𝑘𝜋]1/𝑛     𝑓𝑜𝑟 𝑘 = 0,1,2,3, … … 

                                              𝑥 = [ cos
2𝑘𝜋

𝑛
+ 𝑖 sin

2𝑘𝜋

𝑛
 ]                 𝑓𝑜𝑟 𝑘 = 0,1,2,3, … …     

                                            But  cos 𝜃 + sin 𝜃 ) = 𝑒𝑖𝜃    

∴   𝑥 =  𝑒
2𝑘𝜋𝑖

𝑛      𝑓𝑜𝑟 𝑘 = 0,1,2,3, … 

Put k = 0,1,2,3, ………𝑤𝑒 𝑔𝑒𝑡   𝐺 =  {  𝑒
2(0)𝜋𝑖

𝑛
  , 𝑒

2(1)𝜋𝑖

𝑛
  , 𝑒

2(2)𝜋𝑖

𝑛
  , 𝑒

2(3)𝜋𝑖

𝑛
  … … … … 𝑒

2𝑘𝜋𝑖

𝑛
   } 

                                               𝑙𝑒𝑡 𝜔 =  𝑒
2𝜋𝑖

𝑛
  
 

         ∴   𝐺 = {1, 𝜔, 𝜔2, 𝜔3, … … … . 𝜔𝑛−1 }   𝑤ℎ𝑒𝑟𝑒  𝜔𝑛 = 1 𝑏𝑢𝑡 𝜔3 ≠ 1  is the set of nth roots of unity 
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                     To show that <   𝐺,   .  > 𝑖𝑠 𝑎𝑛 𝑎𝑏𝑒𝑙𝑖𝑎𝑛 𝑔𝑟𝑜𝑢𝑝. 

𝐵𝑦 𝑡ℎ𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈  𝐺       𝑎𝑛 =  1  

1.  Closure property: 

            By the definition of G For all a , b ∈ G      a n = 1 and b n =1  

                   Now   ( a b )n = an  bn = 1.1=1 ⇒ a b ∈ G . 

                        ∴ Closure property exist. 

2. Associative Property: All the elements in G is complex numbers. 

But the set of complex numbers satisfies associative. 

∴ Associative exist in G. 
 

3. Existence of Identity: By the definition of nth roots of unity 1 = ω 0 = ω n 

is the identity in G exist and for all a ∈ 𝐺 ⇒ 𝑎. 1 = 𝑎 = 1. 𝑎 

4. Existence of Inverse: For all ω r ∈ G where 0 ≤ r ≤ n-1 ∃ an element 

                 ω(n-r) ∈ G where n-r ≥ 1⇒ 𝑛 − 𝑟 − 1 > 0 such that ω r ω (n - r) = ω n =1. 

                      ∴ ω (n - r) ∈ G is the inverse element of ω r . 

Hence G is a group wrt multiplication 

 

 

All the best  
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Unit-II Subgroups, Cosets & Lagrange’s theorem 

                                                                                                                                    B. Srinivasa Rao. GDC RVPM 

Definition (Complex of the Group) 

           If G is a Group, then any non-empty subset of G is called Complex of the Group. 

                                                                             G 

 H K 

 Example: H= {2 ,3,4,5, 6,… } is a Complex of the Group of integers < Z,+ > 

Example: H ={ 𝑖, −𝑖 } is a complex of the Group G = { 1,-1,𝑖, −𝑖 }.  

Properties: If H and K are complex of the group G then 

                        𝑖) 𝐻−1 = { ℎ−1 ∶ ℎ ∈ 𝐻 }  

                       𝑖𝑖) 𝐻𝐻−1 = { ℎ1ℎ2
−1 ∶  ℎ1 ∈ 𝐻 ℎ2 ∈ 𝐻}  

                      𝑖𝑖𝑖)𝐻𝐻 = { ℎ1ℎ2 ∶  ℎ1 ∈ 𝐻 ℎ2 ∈ 𝐻}      

𝑖𝑣)𝐻𝐾 = {ℎ𝑘: ℎ ∈ 𝐻, 𝑘 ∈ 𝐾 } 

                        𝑣) 𝐻−1 𝐾−1 { ℎ−1 𝑘−1: ℎ ∈ 𝐻, 𝑘 ∈ 𝐾 }  

 

Definition (Sub group) :  

    A non-empty subset H of a group G is said to be subgroup of G if H                                   satisfies all the 

four properties of the group or H itself is a group. 

 

                                G 

 

 H ( 4 Properties) 
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Example:    H = {1, -1} is a sub group of G = {1 , -1, 𝑖 , −𝑖 } 

 Example:  The set of Even Integers    2Z = {. . . . . .. -6, -4, -2,0,2,4,6, . . ..}  

  and the multiples of 3               i.e 3Z = { . . . . . . . -9,-6,-3,0,3,6,9, . . . . .} etc.  

   are the subgroups of Group of Integers Z w r t addition. 

Result: Prove that if H is a sub group of G then H-1 = H.        

  Proof: Let H is a sub group of G, For all ℎ ∈  𝐻 and H is a subgroup of G                                                                                             

By inverse law in the sub group H    h-1 ∈ H   ⇒ (ℎ−1)−1 ∈ H-1   ⇒ h ∈ H-1 

                                                                       ∴   H ⊆ H -1   ------(1) 

               For all h -1 ∈ H -1     where h ∈ H  

                But H is a subgroup of G   As h ∈ H     By inverse law h-1 ∈ H. 

∴ H -1⊆ H ------- (2) 

 
                                    From (1) and (2) H-1 = H 

Note:  B u t  converse is not true. since H={ 𝑖, −𝑖 } is a subset of a Group G = {1,-1,𝑖, −𝑖 }. 

                      Clearly H-1 = { 𝑖−1, (−𝑖)−1} = { −𝑖, 𝑖 } = H       

                 But H is not a subgroup of G, Since  𝑖 × −𝑖 = 1 ∉ 𝐻 

Result: If H is  a subgroup of a group G then prove that HH = H  

Proof: Given that His a subgroup of G  

                                      To show that HH = H  

Case − 1    HH ⊆ H  

By the definition of HH = { ℎ1ℎ2: ℎ1 ∈ 𝐻, ℎ2 ∈ 𝐻} 

For any 𝑥 ∈ 𝐻𝐻 ⇒ 𝑥 = ℎ1ℎ2  ∈ 𝐻𝐻  𝑊ℎ𝑒𝑟𝑒  ℎ1 ∈ 𝐻, ℎ2 ∈ 𝐻 

As ℎ1 ∈ 𝐻, ℎ2 ∈ 𝐻 𝑎𝑛𝑑 𝐻 𝑖𝑠  𝑎 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝑏𝑦 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑙𝑎𝑤  ℎ1ℎ2  ∈ 𝐻  

                                                     ⇒ 𝑥 ∈ 𝐻           ∴ 𝐻𝐻 ⊆ 𝐻       --------(1) 

Case-2    H ⊆ HH  

  For any h∈ 𝐻 ⇒ ℎ = ℎ𝑒 ∈ 𝐻𝐻    ( ∵ 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝐻)  

                           ⇒ ℎ ∈ 𝐻𝐻  

                                      ∴ 𝐻 ⊆ 𝐻𝐻  ----(2) 

                                        𝐹𝑟𝑜𝑚 (1) & (2) HH=H 
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Theorem (Necessary and sufficient condition for sub group of a group) 

 
Statement: A non-empty subset H of a group G to be a subgroup if and only 

if f   for all a, b ∈ H ⇒ a b -1 ∈ H. 

Proof: ⇒ Part Suppose H is a subgroup of G 

 

for all a, b ∈H 

 
⇒ a ∈ H, b ∈H 

 
⇒ a ∈ H, b -1 ∈ H   (  ∵ H is subgroup inverse property in H) 

 
⇒ a b -1 ∈ H. (by closure property in H). 

⇐ Part Assume that H is a subset of G and for all a, b ∈ H ⇒ a b -1 ∈ H. 

 

1.For all a ∈ H ⇒ a∈ H, a ∈ H ⇒ a a -1 ∈ H (given) 

 
⇒ e ∈ H. Identity element exist in H. 

 

   2.As e ∈ H and for all b ∈ H ⇒ e b -1 ∈ H 

 
         ⇒ b -1 ∈ H 

 
                               ∴ for all b ∈ H ⇒ b -1 ∈ H Inverse property exists in H 

 

    3.For all a, b ∈ H ⇒ a ∈ H, b ∈ H 

 
⇒ a ∈ H, b-1 ∈ H (Since for all b ∈ H ⇒ b -1 ∈ H) 

 
⇒ a ( b-1)-1 ∈ H ( for all a, b ∈ H ⇒ a b -1 ∈ H.) 

 
⇒ ab ∈ H 

Closure property exist in H 

                       4.As H⊆ G and G is a group and it satisfies associative property 

                            and hence H Satisfies associative. 

Hence H is a subgroup of G 

 

Theorem: Let G is a group then prove that H is a subgroup of G ⇔ H H-1 = H. 

 Proof: ⇒ Part Let H is a subgroup of G the HH = H and H-1 = H    --------- (1) 
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                         LHS = H H-1 = H H = H = RHS ( Since from (1) ) 

 
             ⇐ Part Let H is a subset of G & H H-1 = H. To show than H is a subgroup  

                   By the definition of HH-1 for all a, b ∊ H then  

                                   ab-1 ∊ H H-1= H ⇒ ab-1 ∊ H. 

Hence the theorem 

 
Theorem:  

    The necessary and sufficient condition for a nonempty finite subset H of the group G 

to be a subgroup is that for all a, b ∈ H then ab ∈ H. 

 

Proof: ⇒ Part Suppose H is a subgroup of G 

 
∴ By closure property in H for all a, b ∈ H then ab ∈ H. 

 

⇐ Part Suppose H is finite subset of group G and for all a, b ∈ H then ab ∈ H -----(1)                       

To show that H is a subgroup of G . 

 
1.Identity property: From (1) for all a ∈ H ⇒ a, a ∈ H 

 
                               ⇒ aa ∈ H⇒ a2 ∈ H⇒ again for a ∈ H, a2 ∈ H 

 
                              ⇒ a a2 ∈ H 

 
                              ⇒ a3 ∈ H and so on . . . . . 

 
                               We get { 𝑎, 𝑎2, 𝑎3, 𝑎4, … … … , 𝑎𝑛 … … } ⊆ H 

 
But H is a finite subset of G. An infinite set is not a sub set of a finite set  

  

∴ 𝑠𝑜𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡 { 𝑎, 𝑎2, 𝑎3, 𝑎4, … … … , 𝑎𝑛 … … } are repeated 

 

                    Suppose 𝑎𝑟 = 𝑎𝑠   𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑟 > 𝑠 

 

                              ⇒ 𝑎𝑟−𝑠 = 𝑎0   𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑟 − 𝑠 > 0 
 

,                               ⇒ 𝑎𝑟−𝑠 = 𝑎0 ∈ 𝐻 ⇒  𝑎0 ∈ 𝐻   𝑆𝑖𝑛𝑐𝑒 𝑟 − 𝑠 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  
 

  2.Inverse property: for all a ∈ H ∃ an element 𝑎𝑟−𝑠−1 ∈ H (𝑟 − 𝑠 − 1 > 1 such that 

 
𝑎𝑎𝑟−𝑠−1 =  𝑎𝑟−𝑠 = 𝑎0 ∈ 𝐻 &   𝑎𝑟−𝑠−1𝑎 =  𝑎𝑟−𝑠 = 𝑎0 ∈ 𝐻    

∴  Inverse property exists in H. 

 

  3.Closure property: Given that for all a, b ∈ H then ab ∈ H.     
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                          4.  Associative property:   As H ⊆ G and is a group Associative holds in H. 

                                                  Hence the theorem. 

 

Example:We know that H = { 𝟏, −𝟏, 𝒊, −𝒊 } is a finite sub group of group of   Complex  

 

                  numbers C. 

 
     𝐴𝑠 𝑖 ∈ 𝐻 ⇒ 𝑖. 𝑖 = 𝑖2 ∈ 𝐻       Also 𝑖 ∈ 𝐻 𝑎𝑛𝑑 𝑖2 ∈ 𝐻 ⇒ 𝑖.  𝑖2 = 𝑖3 ∈ 𝐻  

 

      Again  𝑖 ∈ 𝐻 𝑎𝑛𝑑 𝑖3 ∈ 𝐻 ⇒ 𝑖.  𝑖3 = 𝑖4 ∈ 𝐻   etc   

 

⇒ { 𝑖, 𝑖2, 𝑖3, 𝑖4, 𝑖5, … … … … . } ⊆ 𝐻 𝑏𝑢𝑡 𝐻 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒.   Elements are repeated.they are  

 

 

𝑖3 = −𝑖, 𝑖4 = 1, 𝑖5 = 𝑖4. 𝑖 = 𝑖 ⇒ 𝑖5 = 𝑖 𝑒𝑡𝑐 

 

Theorem: Let H and K are two subgroups of a group G then prove that HK is a subgroup    

                of G if    and only is HK=KH. 

 

Proof:   ⇒ Part Let HK is a subgroup of G 

 
   ⇒ (HK)-1 = HK (Since H is a subgroup ⇒ H-1=H) 

 
⇒ K-1 H -1= HK 

 
⇒ K H = HK (Since H,K are a subgroups ⇒ H-1 = H and K-1= K) 

 
⇐ Part : Suppose H and K are two subgroups of a group G and HK=KH 

To show that HK is a subgroup of G 

That is to show that ( HK ) ( HK )-1 = HK (∵H is a subgroup of G ⇔ HH-1 = H) 

LHS= ( HK ) ( HK )-1 = ( HK ) K-1 H -1 

= H ( K K-1 ) H -1 ( ∵ associative) 

 
 = H ( K ) H -1 ( K is a subgroup of G ⇔ KK-1 = K 

 

 = ( H K ) H -1                           

 
    = (KH) H -1 (∵  HK = K H ) 

 
    = K( H H -1) 

 
     = KH = HK = RHS              (∵HH-1 = H) 
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   Theorem:   Prove that the intersection of two subgroups is a subgroup of the group G . 

Proof:   

  Let H1 and H2 are two subgroups of the group G. To show that H1 ∩ H2 is also subgroup of G . 

1. 𝐻1 ∩ 𝐻2  ≠  𝜑  As H1 and H2 are two subgroups of G by             

  Identity property                                            e ∈ 𝐻1  and e ∈ 𝐻2   ⇒ e ∈ H1 ∩ H2 ⇒ H1 ∩ H2 is non-empty sub set of G 

2.For all a, b ∈ H1 ∩ H2 ⇒ ab -1 ∈ H1 ∩ H2 

For all a, b ∈ H1 ∩ H2 ⇒ a, b ∈ H1 and a, b ∈ H2 

But Let H1 and H2 are subgroups of G 

∴ ab -1 ∈ H1 and ab -1 ∈ H2 

⇒ ab -1 ∈ H1 ∩ H2 

Hence H1 ∩ H2 is subgroup of the group G 
 
Theorem: Prove that the union of two subgroups is a subgroup of a group G if and only  

                 if      one is contained in other. 

Proof : Let H1 and H2 are two subgroups of the group G  To prove that 

H1𝖴 H2 is a subgroup ⇔ H1 ⊆ H2 or H2 ⊆ H1 

⇐Part  Let H1 and H2 are two subgroups of the group G and H1 ⊆ H2 or H2 ⊆ H1 

To show that H1𝖴 H2 subgroup 

If H1 ⊆ H2    ⇒ H1𝖴 H2 = H2 subgroup of G 

If H2 ⊆ H1 ⇒ H1𝖴 H2 = H1 subgroup of G 

⇒ Part let H1 and H2 subgroups and H1𝖴 H2 is a subgroup 

to show that H1 ⊆ H2 or H2 ⊆ H1 

If H1   ⊄ H2 ⇒   For all a ∈ H1   ⊄ H2    => a ∈ H1 but a∉ H2   -----   (1) 

If H2   ⊄ H1 ⇒   For all b ∈ H2   ⊄ H1    => b ∈ H2   but b∉ H1 --------- (2) 

As a ∈ H1, b ∈ H2  => a, b ∈ H1𝖴 H2 

But H1𝖴 H2 is a subgroup 

∴ ab∊ H1𝖴 H2 

⇒ ab ∊ H1 or ab ∊ H2 ---------------------------- (3) 

                               From (1) and (3) 
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For a ∊ H1 , ab ∊ H1 ⇒ a-1 ∊ H1 ( subgroup ) ab ∊ H1 

   ⇒ a-1(ab ) ∊ H1 ( Closure property in H1 ) 

     ⇒ (a-1a)b ∊ H1 

       ⇒ eb ∊ H1 

⇒ b ∊ H1 but from (2)  b ∉ H1 it is Contradiction .. 

 Also from (2) and (3) 

ab ∊ H2 b ∊ H2 ⇒ ab ∊ H2 b-1 ∊ H2 (Sub group of G) 

⇒ (a b ) b-1 ∊ H2 ( Closure property in H1 ) 

⇒ a(b b-1) ∊ H2 

⇒ ae ∊ H2 

⇒ a ∊ H2 but from (1) a ∉ H2 it is also a contradiction. 

∴ H1 ⊆ H2 or H2⊆ H1 

 

                                           COSETS 
Definition (Cosets): 

    Let H is a subgroup of the group G then for any a ∈ G to define a set 

                         if H = { h1, h2, h3, . . .. h n, ....... } = {ℎ: ℎ ∈ 𝐻} 

                       𝑎𝐻 = { ah1, ah2, ah3, . . .. ah n,} = {𝑎ℎ: ℎ ∈  𝐻 } is the left coset of H in G. 
 
                𝐻𝑎 = {ℎ1𝑎, ℎ2𝑎, ℎ3𝑎, … … . . ℎ𝑛𝑎, . . } = {ℎ𝑎: ℎ ∈ 𝐻}  is the right coset of H in G 
 
 
 
 
                               𝐻𝑎                        Hb                        G 
 
                                𝑎                         𝑏 
  

Example: We know that 

     𝐻 =  {. . .  . . −6, −4, −2,0,2,4,6, … … . }    is a sub group of additive group of Integers 

                           Z = {. . . . . . .-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,…….} 

Then the right cosets of H for 3∈ Z but 3 ∉' H 

      𝐻 +  3 =  {. . . −6 + 3, −4 + 3, −2 + 3,0 + 3,2 + 3,4 + 3,6 + 3, } 

                                            =  { . . . . . . −3, −1,1,3,5,7,9, . . . . . . . . }.  
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           𝐻 + 5 =  { . . . . . . . −6 + 5, −4 + 5, −2 + 5,0 + 5,2 + 5,4 + 5,6 + 5, … … … . } 

               =  { . . . . . . −1,1,3,5,7,9,11, }         𝑓𝑜𝑟 5 ∈  𝑍 𝑏𝑢𝑡 5 ∉ ′ 𝐻 

      𝐻 +  2 =  {. . . . . . . −6 + 2, −4 + 2, −2 + 2,0 + 2,2 + 2,4 + 2,6 + 2, } 

                                       = { . . . . . . . −4, −2,0,2,4,6,8, … … }  = 𝐻  

                             ∴  𝑓𝑜𝑟 2 ∈  𝐻 𝑖𝑓𝑓 𝐻 +  2 =  𝐻  

 

              𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑓𝑜𝑟 4 ∈  𝐻 𝑖𝑓𝑓 𝐻 +  4 =  𝐻 

  Note: For a ∈ H   if and only if     Ha = H = a H 

 

Theorem   If H is a subgroup of the group G for any a, b ∈ G Prove that 

 𝒊) Ha = Hb iff    ab-1 ∈ H 

𝒊𝒊)aH = bH   iff     a-1b ∈ H 
          
       Proof:    ⇒ par              Suppose Ha = Hb               ------- (1) 

                  As a ∊ Ha ⇒ a∊ Hb        since from (1) 

                            ⇒ ab -1∊ Hb b-1 

                            ⇒ ab -1∊ He 

                            ⇒ ab -1∊ H 

⇐ Part . 

    𝑖) Suppose ab -1∊ H ⇒ H ab -1 = H    ( Since  a∊ H ⇔ Ha = H = aH) 

                                    ⇒ (H ab -1) b = Hb 

                                    ⇒ Ha (b -1 b) = Hb 

                                    ⇒ H a (e) = Hb 

                                   ⇒ H a = Hb 

                  𝑖𝑖)Similarly, to prove second one also. 𝑎𝐻 =  𝑏𝐻 𝑖𝑓𝑓 a-1b ∈ H  

Theorem: If H is a subgroup of the group G for any a, b ∈ G Prove that 

          𝒊) a ∈ Hb  𝒊𝒇𝒇   Ha = Hb 

          𝒊𝒊) b ∈ Ha   𝒊𝒇𝒇  a H = b H  

      Proof: i) ⇒ Part    As a ∈ Hb ⇒ ab -1∊ Hbb-1    ⇒ ab -1 ∊ He 

                         ⇒ ab -1 ∊ H ⇒   H ab -1 = H (Since a ∈ H if and only if Ha = H ) 
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                        ⇒ (H ab -1)  b=Hb ⇒ H a = Hb 

⇐ Part        Let H a=Hb clearly a ∈ Ha ⇒ a ∈ Hb Since H a=Hb   

                                                                           Similarly, to prove b ∈ a H iff a H = b H 

Theorem:   

 Prove that in a group G any two right or left cosets are either   identical or 

disjoint. 

Proof: Let H is a subgroup of the group G to show that  

             for any a, b ∈G the right cosets Ha and Hb are 

             either Ha = Hb (identical) or Ha ∩ Hb = 𝜑 (disjoint)  

 Part-1 suppose Ha ∩ Hb ≠ 𝜑 

∴ for any x ∈ Ha ∩ Hb ⇒ x ∈ Ha and x ∈ Hb 

 

                                        ⇒ x = h1a and x = h2b for h1, h2 ∈ H 

 

                                        ⇒ h1a = h2b for h1, h2 ∈ H 

 

                                             ⇒ ℎ1
−1

(ℎ1𝑎) = ℎ1
−1

(ℎ2𝑎)  (∵  ℎ1 ∈ 𝐻 ⇒  ℎ1
−1 ∈ 𝐻) 

 

                                        ⇒ a ∈ Hb ⇒ Ha = Hb identical  

                                                                                                                                 Similarly, to prove left cosets also 

  Part-2  It is very clear if Ha ≠ Hb then Ha ∩ Hb = 𝜑 

 
𝑳𝒂𝒈𝒓𝒂𝒏𝒈𝒆’𝒔 𝑻𝒉𝒆𝒐𝒓𝒆𝒎 𝒇𝒐𝒓 𝒇𝒊𝒏𝒊𝒕𝒆 𝒈𝒓𝒐𝒖𝒑𝒔  

 
Statement: The order of a subgroup H of a finite group G is a divisor of order of the group 

G    that is O(H) is a factor of O(G) 

Proof:                          

𝐿𝑒𝑡 𝐺 𝑏𝑒 𝑎 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑓𝑖𝑛𝑖𝑡𝑒 𝑜𝑟𝑑𝑒𝑟 𝑛. 𝑖𝑒 𝑂(𝐺) = 𝑛 

        𝐿𝑒𝑡 𝐻 𝑏𝑒 𝑎 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝐺 𝑎𝑛𝑑 𝑙𝑒𝑡 𝑜 (𝐻) = 𝑚  

              Suppose    ℎ1 , ℎ2 , … … , ℎ𝑚     are the m members of H. 

                        Let a ∈G.                                                                           Then Ha is a right coset of H in G and we have 

                                                                                                                                                                                                                      Ha= { ℎ1𝑎 , ℎ2 𝑎, . . . ℎ𝑚 𝑎 }. 

𝐻𝑎 ℎ𝑎𝑠 𝑚 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑚𝑒𝑚𝑏𝑒𝑟𝑠, 𝑠𝑖𝑛𝑐𝑒 ℎ𝑖𝑎 = ℎ𝑗𝑎  ⇒ ℎ𝑖 = ℎ𝑗 𝑓𝑜𝑟 𝑖 ≠ 𝑗       

                     𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑂 ( 𝐻𝑎 ) =  𝑚. 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐺 
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𝐵𝑢𝑡 𝑎𝑛𝑦 𝑡𝑤𝑜 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑟𝑖𝑔ℎ𝑡 𝑐𝑜𝑠𝑒𝑡𝑠 𝑜𝑓 𝐻 𝑖𝑛 𝐺 𝑎𝑟𝑒 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 or identical 

ie , they have no element in common. Since G is a finite group, the number of distinct right 

cosets of H in G will be finite, say, equal to k. 

The union of these k distinct right cosets of H in G is equal to G.  

   Thus 𝐻𝑎1 , 𝐻𝑎2 , 𝐻𝑎3 , … … . . 𝐻𝑎𝑘are the k distinct right cosets of H in G, 

                      ∴ 𝐺 = 𝐻𝑎1 ∪ 𝐻𝑎2 ∪ 𝐻𝑎3 ∪, … … . .∪ 𝐻𝑎𝑘  

           ⇒   𝑂(𝐺) = 𝑂(𝐻𝑎1 ∪ 𝐻𝑎2 ∪ 𝐻𝑎3 ∪, … … . .∪ 𝐻𝑎𝑘) 

                 𝑛 =  𝑂(𝐻𝑎1) + (𝐻𝑎2) + (𝐻𝑎3) + ⋯ … . . +(𝐻𝑎𝑘)=  

          Since 𝐻𝑎1 , 𝐻𝑎2 , 𝐻𝑎3 , … … . . 𝐻𝑎𝑘  are disjoint co-sets 

                =  𝑚 +  𝑚 +  … … … + 𝑚 ( 𝑘 𝑡𝑖𝑚𝑒𝑠 )         (𝑆𝑖𝑛𝑐𝑒 𝑂( 𝐻𝑎 )  =  𝑚 ) 

              𝑛 = 𝑘𝑚 ⇒ 𝑚/𝑛     (Since 12 = 3 ×  4 ⇒ 3/12) 

⇒  𝑂(𝐻) / 𝑂(𝐺) 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝑖𝑠 𝑎 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝐺𝑟𝑜𝑢𝑝 

 Note: 𝑛 (𝐴𝘜 𝐵)  =  𝑛( 𝐴 )  +  𝑛( 𝐵) −  𝑛( 𝐴 ⋂ 𝐵 )  𝐵𝑢𝑡 𝑖𝑓 𝐴 𝑎𝑛𝑑 𝐵 𝑎𝑟𝑒 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 . 

                𝑖. 𝑒. 𝐴 ⋂ 𝐵 = 𝜙 𝑡ℎ𝑒𝑛 𝑛 (𝐴𝘜 𝐵)  =  𝑛(𝐴 )  +  𝑛( 𝐵) 

Note:  3× 5 =15 ⇒ 3 is a factor of 15 and 5 is a factor of 15 i e 3/15 5/15 

And 17 × 4 = 68 ⇒ 17 is a factor of 68 and 4 is a factor of 68. ie 17/68 ,4/68 

 

 
 
                                      𝑎2 Ha2 

 
 G H 

 

 Hak 

 Ha1 

 𝑎1 

 

 

 

********* 
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B. SRINIVASARAO. Lecturer in Maths GDC RVPM 

NORMAL SUBGROUPS 
 

    Definition (Normal subgroup): 

A non-empty subset N of Group G is said to be a Normal subgroup of G 

if   1. For all a, b ∊ N ⇒ ab-1 ∊ N (subgroup property) 

2. For all x ∊ G, n ∊ N ⇒ xnx-1 ∊ N (Normal property) 

 
 
 

                      𝑥       𝑥−1                         a b 

                                                             N 

                                                             𝑛    𝑥𝑛𝑥−1 
 
 

 

Note : If N is Normal then xN x-1 = { xnx-1 :  x∊ G, n ∊ N } ⊆ N 

Example: H= { 1,-1 } is a Normal subgroup of G= { 1, −1, 𝑖, −𝑖 } 

let 𝑥 =  𝑖, n = -1 ∊ H and x-1 = i-1 = -I ∊ G    

Now xnx-1= i(-1)(-i) = -1 ∊ H 

𝑆𝑖𝑚𝑝𝑙𝑒 𝐺𝑟𝑜𝑢𝑝: A group G having no proper normal subgroups is called simple group 

                     ie { e } and G are only Normal subgroups of G 

Theorem: -1 

If N is a subgroup of a group G then prove that N is Normal if and only if xNx-1 = N ∀ x ∈ G. 

Proof: ⇒ part.   Suppose N is normal subgroup of G 

            ∀ x ∈ G. n ∈ N ⇒ xnx-1 ∈ N 

          ⇒ { xnx-1 ∈ N   : n ∈ N } ⊆ N 

          ⇒ xNx-1 ⊆N -------- (1) 

From (1) for all x ∈ G. ⇒ x-1 ∈ G 
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Therefore ( x -1 ) N (x-1 )-1 ⊆ N 

⇒ x -1N x ⊆ N 

⇒ x ( x -1N x ) x-1 ⊆ x N x -1 ∀ x ∈ G. 

⇒ ( x x -1) N (x x -1 ) ⊆ x N x -1 ∀ x ∈ G. 

⇒ ( e ) N (e ) ⊆ x N x -1 ∀ x ∈ G. 

⇒ N ⊆ x N x -1 ∀ x ∈ G. --------- (2) 

From (1) and (2) xNx-1 = N ∀ x ∈ G. 

⇐ part     Suppose xNx-1 = N ∀ x ∈ G to show that N is normal 

                  By the definition of xNx-1 
 
∀ x ∈ G. n ∈ N ⇒ xnx-1 ∈ x N x-1 = N 

⇒ xnx-1 ∈  N 

Hence N is normal subgroup of G 

Theorem: 2 

If N is a subgroup of a group G then prove that N is Normal if and only if each left coset of N is 

the right coset of N in G . 

Proof: ⇒ part Suppose N is normal subgroup of G 

x N x-1 = N ∀ x ∈ G. 

⇒ ( x N x-1 ) x = N x 

⇒ x N (x-1 x )= N x ∀ x ∈ G. ( by associative) 

⇒ x N = N x   ∀ x ∈ G. 

⇒   each left coset of N is the right coset of N in G . 

⇐ part Suppose x N = N y ∀ x, y ∈ G ----------- (1) 

As x ∈ x N = N y ∀ y ∈ G. 

⇒ x ∈ N y ∀y ∈ G. 

⇒   N x = N y ∀y ∈ G. --------- (2) 

From (1) and (2) x N = N x ∀ x ∈ G. 

⇒   x-1( x N )= x-1N x ∀ x ∈ G. 

⇒ ( x-1 x )N = x-1N x ∀ x ∈ G. 

⇒ e N = x-1N x ∀ x ∈ G ⇒ N = x-1N x ∀ x ∈ G. 

Hence N is normal subgroup of G. 
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Theorem: 3 

If N is a subgroup of a group G then prove that N is Normal if and only if product of two right 

(left) cosets of N is again right(left) coset of N in G. 

Proof:   ⇒ Part Suppose N is normal subgroup of G and N x, Ny are two right cosets of N .  

                      To show that ( N x Ny ) = N x y ∀ x, y ∈ G 
LHS = ( N x Ny ) 

= N( x N )y = N( N x )y ( since N is normal subgroup⇒ x N = N x ) 

= N N x y 

= N x y (Since H is subgroup ⇒ H H = H ) 

= RHS 

⇐ Part Let N is a subgroup of G and product of two right co sets of N is a right co set of N in G 

ie  (N x)( Ny ) = N x y ∀ x, y ∈ G     ........................... (1) 

To show that N is Normal ie for all x ∊ G n ∊ N ⇒ xnx-1∊ N 

Since xnx-1= e (xnx-1) since e is the identity in H 

=(ex)( nx-1) ∊ ( Hx)(Hx-1 ) since e∊ H 

=(ex)( nx-1) ∊( Hxx-1 ) since from (1) 

=(x)( nx-1) ∊( He) 

= x n x-1 ∊ H 

∴ for all x ∊ G n ∊ H ⇒ xnx-1∊ H 

Hence H is normal subgroup of G 

Theorem:4 

Prove that the intersection of two normal subgroups is also a normal subgroup of group G. 

Proof: Let N1 and N2 are two normal subgroups of the group G. 

To prove that N1 ∩ N2 is also a normal subgroup of G. 

 

1) N1 ∩ N2 is non empty. 

As N1 and N2 are subgroups by Identity law e ∈ N1 and e ∈ N2 

⇒ e ∈ N1 ∩ N2 

⇒ N1 ∩ N2 is nonempty. 

2) For all a, b ∈ N1 ∩ N2 ⇒ ab-1 ∈ N1 ∩ N2 

As For all a, b ∈ N1 ∩ N2 ⇒ a, b ∈ N1 and a, b ∈ N2        

But N1 and  N2 are subgroups of G 
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⇒ ab-1 ∈ N1 and ab-1∈   N2 

⇒ ab-1 ∈ N1 ∩ N2 

3) For all x ∈ G , n ∈ N1 ∩ N2   ⇒ x n x-1 ∈ N1 ∩ N2 

As for all x ∈ G , n ∈ N1 ∩ N2   ⇒ x ∈ G , n ∈ N1 and n ∈ N2 

⇒ x ∈ G , n ∈ N1 and x ∈ G , n ∈ N2 

But N1 and N2 are normal subgroups 

⇒ x n x-1 ∈ N1 and x n x-1 ∈ N2                                                                        

⇒ x n x-1 ∈ N1 ∩ N2  

Hence N1 ∩ N2    is a normal subgroup of G 

Definition (Index of subgroup): In a group G the number of distinct right or left cosets of a 

subgroup H is called Index of H in G and is denoted by [ H : G] 

Theorem:5   Prove that every subgroup of index 2 is normal. 

Proof: Let H is a sub group of a group G and index of H is 2. 

To show that H is Normal. 

As index of 𝐻 𝑖𝑠 2 ∴ for any x ∈ G ⇒ x ∈ H or x ∉ H . 

If x ∈ H ⇒ Hx = H = x H ⇒ H is normal. 

 

 𝐻                    𝐻𝑥   𝑜𝑟  𝑥𝐻     𝐺 

If x ∉ H ⇒ we get a right coset Hx or a left coset xH. 

If Hx is a right coset of H in G and index of H is 2. 

            ∴ G = H 𝖴 Hx       or       G = H 𝖴 x H 

⇒ H 𝖴 Hx = H 𝖴 x H 

⇒ Hx = x H since H , Hx and x H are disjoint 

⇒ H is normal. 

Theorem :6 

Let H is a subgroup and N is a normal subgroup of a group G then prove that H ∩ N is a normal 

subgroup of H. 

Proof: As H and N are subgroups of G ⇒ H ∩ N is a sub group of G 

But H ∩ N ⊆ H ⇒ H ∩ N is a sub group of H. 

ie to show that for all x ∈ H , n ∈ H ∩ N ⇒ x n x-1 ∈ H ∩ N 

As for all x∈ H , n ∈ H ∩ N ⇒ for all x∈ H , n ∈ H and n ∈ N 

⇒ for all x∈ H , n   ∈ H and x ∈ G , n ∈ N     ( ∵ H ⊆ G) 
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As N is normal subgroup of G ⇒ x ∈ G , n ∈ N ⇒ x n x-1 ∈ N ------------------ (1) 

As H is a subgroup of G ⇒ for all x ∈ H, n ∈ H⇒ x, x-1 ∈ H, n ∈ H 

⇒   x n x-1 ∈ H   ( ∵    H is a subgroup of G ) ----------- (2) 

From (1) and (2) x n x-1 ∈ H and x n x-1 ∈ N 

⇒ x n x-1 ∈ H ∩ N. 

Hence the theorem. 

Theorem :7 

Let N and M are two normal subgroups of a group G then prove that NM is also a normal 

subgroup of G. 

Proof: 

We know that any sub group is commutes with a complex of a group . 

Therefore NM = MN (Here we are taking M is complex of G ) 

⇒ NM is a subgroup of G ( ∵ HK is subgroup of G iff HK = KH ) 

Now to find the normal property 

For all x ∈ G , nm ∈ NM ⇒ x (nm) x -1 ∈ NM 

As x (nm) x -1 = x (n e m) x -1 = x [n ( x -1 x )m]x -1 

= [x n x -1 ] [x m x -1 ] ∈ NM 

Since N and M are normal subgroups of G 

we get [x n x -1 ] ∈ N [x m x -1 ] ∈ M 

Hence NM is a normal subgroup of G 

Theorem: 8 (Normalizer of a group)  

If G is a group and for any a ∈ 𝐆 show that the set 

N(a) = { x∈ 𝐆 : a x = x a for a ∈ 𝐆 is a subgroup of G and is called normalize of G. 

Proof:    Given that for all x ∈ N(a) ⇔   a x = x a for a ∈ G 

1) N(a) is non empty: we know that a e = e a ⇔ e ∈ N(a) 

⇒ N(a) is nonempty sub set of G 

2) for all x ∈ N(a) ⇒ x-1 ∈ N(a) 

As f or all x ∈ N(a) ⇒ a x = x a 

⇒ x -1 ( a x ) x -1= x -1 ( x a ) x-1 

⇒ ( x -1 a ) ( x x -1 )= (x -1 x ) (a x-1 ) 

⇒ (x -1 a ) (e )= (e ) (a x-1 ) 

⇒ x -1a = a x -1 ⇒ x-1 ∈ N(a) 

3) for all x , y ∈ N(a) ⇒ to show that x y-1 ∈ N(a) 
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That is to show that  a ( x y-1 ) = ( x y-1 ) a 

LHS = a (x y-1) = (a x ) y-1 = (x a) y-1 ( since x ∈ N(a)  a x = x a for a ∈ G) 

= x (a y-1 ) 

= x ( y-1a ) ( since y ∈ N(a) ⇒ y -1 ∈ N(a) ) 

= (x y-1 ) a =RHS 

∴ N(a) is a normal subgroup of G 

Note : N(e) = G where e is the identity and N(a) is not a normal subgroup of G 

Theorem:9 Let M and N are two normal subgroups of group G such that M ⋂ N = { e } then prove 

 
that each element in M is commute with each element in N. 

Proof : Give that M,N are Normal subgroups of G and M ⋂ N = { e } 

To show that for all m ∊ M , n ∊N then m n = n m 

ie ( m n) (m n )-1 = (n m) (m n )-1 

ie e = (n m) ( n-1m-1 ) 

ie  n m n-1m-1 = e 

Case -1 . Let M is Normal and N is a subgroup of G 

∴ for all m ∊ M , n∊ N ⊆ G 

⇒ m ∊ M ,  n∊ G and M is Normal 

⇒ n m n-1 ∊ M but m-1 ∊ M 

⇒ n m n-1 m-1 ∊ M    by closure in M ......... (1) 

 
Case-2 . Let N is Normal and M is a subgroup of G 

∴ for all n ∊ N , m∊ M ⊆ G 

⇒ n-1 ∊ N , m ∊ G and N is Normal 

⇒ m n-1 m-1 ∊ N but n ∊ N 

⇒ n m n-1 m-1 ∊ N   by closure in N ........ (2) 

From (1),(2) n m n-1 m-1 ∊ M ⋂ N ={ e } 

∴ n m n-1 m-1 = e It follows m n = n m 
 

Quotient Group 

Theorem:10   Prove that if N is a Normal subgroup of the group G then the set of cosets of N    G/N = 

{N a : a ∈ G } form a Group w r t coset multiplication 

𝑁 𝑎 𝑁 𝑏 =  𝑁𝑎 𝑏 for all a, b ∈ G 
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a-1 

G N Ne Na-1 Nb 
a    b Na 
 

 
Proof: To show that < G/N, . > is a Group 

 
1.Closure Property: For all Na, N b ∈ G/N then a, b ∈ G but G is a Group 

⇒ a b ∈ G 

⇒ N (a b) ∈ G/N (Since a∈ G ⇔ Na ∈ G/N 

⇒ ( N a)(Nb) ∈ G/N 

⇒ G/N is closed 

2) Associative property: For all N a, N b, N c ∈ G/N where a, b, c ∈ G 

Now (Na) [( Nb)( Nc )] = (N a) [ N(b c )] 

= N[a (b c )] 

= N[( a b )c )] since [a (b c )] = [( a b )c )] in G 

=[N(a b)]( Nc ) 

=[(Na) ( Nb)] (Nc ) 

Associative property exist. 

3) Identity property: For all Na in G/N there exist a coset Ne in G/N   ( ∵  e ∈ G) 

Such that (N a ) (Ne)= N( ae ) = N a. 

(Ne )(Na)= N( e a ) = Na. 

∴ Ne = N is the Identity in G/N. 

4) Inverse property: For all Na in G/N there exist a coset Na-1 in G/N (since a∈ G ⇒ a-1∈ G 

such that (Na )[ Na-1 ]= N[ a (a-1 )] = Ne = N. 

[ Na-1 ] ( Na ) = N (a-1 a ) = Ne = N 

∴ [ Na-1 ] is the inverse element of Na in G / N. 

∴ < G/N, . > is a Group 

Theorem :11 Let N is an normal subgroup of the group G then prove that 

If G is commutative group then G / N also commutative 

Proof: For all Na, Nb ∈ G / N where a, b∈ G 

( Na) (Nb) = N(a b) 

= N (b a)                     (  ∵  a b = b a in G) 

         = ( Nb) (N a)                    Commutative property holds. 
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                                                                      Group Theory II BSC MATHS 

UNIT- IV. HOMOMORPHISMS AND ISOMORHISMS 

 

        B. SRINIVASARAO. Lecturer in Mathematics, Government Degree College, Ravulapalem.  

Definition (Homomorphisms)Let G and G ‘ are groups and a function f: G → G‘ is said to be  

 homomorphism if for all a, b ∈  G then    𝑓 (𝑎 𝑏)  =  𝑓(𝑎) 𝑓(𝑏). 

Definition (Endomorphism): A homomorphism f from G into itself is called endomorphism 

Definition (Isomorphism): A function f: G → G‘ is said to be Isomorphism if it is  

                             1)One-one   2) onto   3) Homomorphism 

                                            And is denoted by G ≅ G’ 

 Monomorphism: A function f from a group G into a group G’ is said to be Monomorphism if it is 

               1.one-one ie for all 𝑎 , 𝑏 ∈   𝐺  𝐼𝑓 𝑓(𝑎)   =  𝑓(𝑏)  ⇒  𝑎 =  𝑏. 

               2.Homomorphism. 

Epimorphism: A function f from a group G into a group G’ is said to be Epimorphism if it is  

          1) Onto    𝑖𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈  𝐺’ ∃ 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡   𝑥 ∈   𝐺 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦 =  𝑓(𝑥). 

          2) Homomorphism. 

General properties of Homomorphism’s: 

     Let 𝑓 ∶  𝐺 →  𝐺’ is a homomorphism then prove that  

          1) 𝑓(𝑒)  = 𝑒’ 𝑤ℎ𝑒𝑟𝑒   𝑒’  𝑖𝑠 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑖𝑛 𝐺’  

         2) 𝑓(𝑎−1) =  [𝑓(𝑎)]−1    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐺 

𝑷𝒓𝒐𝒐𝒇 ∶ 1) By identity law in G   𝑎 𝑒 =  𝑎  =  𝑒 𝑎 

    Now     𝑓(𝑎)  =   𝑓(𝑎 𝑒)   =  𝑓(𝑎) 𝑓( 𝑒 )       since f is homomorphism 

                 𝑓(𝑎)  𝑒 ‘ =   𝑓(𝑎) 𝑓( 𝑒 )   where e’ is the identity in G’ 

                        𝑒’ =  𝑓( 𝑒)                  since by left cancellation law . 

2) We know by inverse law   𝑒 = 𝑎𝑎−1 = 𝑎−1𝑎      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐺 

      𝑆𝑖𝑛𝑐𝑒 𝑒’ =  𝑓( 𝑒)   =  𝑓(𝑎𝑎−1 )  =    𝑓( 𝑎 ) 𝑓( 𝑎−1  )        ( ∵  f is homomorphism ) 
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                   ∴   𝑒’ =   𝑓(  𝑎 ) 𝑓( 𝑎−1 )      -----------(1)    

 𝐴𝑔𝑎𝑖𝑛 𝑒’ =  𝑓( 𝑒)   = 𝑓 (𝑎−1𝑎 )  =  𝑓 (𝑎−1)  𝑓(𝑎 )       ( ∵   𝑓 𝑖𝑠 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 )  

                          𝑒’ =  𝑓(𝑎−1)  𝑓(𝑎 )    -------------- (2) 

 𝑓𝑟𝑜𝑚 (1) 𝑎𝑛𝑑 (2)    𝑓(  𝑎 )𝑓( 𝑎−1 ) = 𝑒′ = 𝑓(𝑎−1)  𝑓(𝑎 )       

                                                                  ( ∵   𝑥 𝑦 =  𝑒 =  𝑦 𝑥  ⇒  𝑦 =  𝑥−1) 

                       I𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠  𝑓(𝑎−1) =  [𝑓(𝑎)]−1    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐺   

 

Kernel of Homomorphism: Let f : G → G’ is a homomorphism then to define Kernel of  

             Homomorphism by 

                        𝐾𝑒𝑟 𝑓 =  {  𝑥 ∈   𝐺 ∶  𝑓( 𝑥 )  =  𝑒’  𝑤ℎ𝑒𝑟𝑒   𝑒’  𝑖𝑠 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑖𝑛 𝐺’  }      

                                         and is denoted by K or Ker f. 

 

Theorem:  Let f: G → G’ is a homomorphism then prove that Ker f is a normal subgroup of G. 

 Proof: By the definition of Ker f   

                  𝐹𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝐾𝑒𝑟 𝑓  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓  𝑓( 𝑥 )  =  𝑒’  𝑤ℎ𝑒𝑟𝑒 𝑒’  𝑖𝑠 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑖𝑛 𝐺’   

        𝟏)𝑲𝒆𝒓𝒇  𝒊𝒔 𝒏𝒐𝒏𝒆𝒎𝒑𝒕𝒚:  

                   𝐵𝑦 𝑇ℎ𝑒 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦  𝑓(𝑒)  = 𝑒’  ⇒  𝐾𝑒𝑟 𝑓 𝑖𝑠 𝑛𝑜𝑛 𝑒𝑚𝑝𝑡𝑦.   

          2)𝐹𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  𝐾𝑒𝑟 𝑓 ⇒  𝑎𝑏−1  ∈  𝐾𝑒𝑟 𝑓  

     𝐴𝑠 𝑓 (𝑎𝑏−1 ) =  𝑓 (𝑎)𝑓(𝑏−1 )      ∵  𝑓 𝑖𝑠 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚  

                         =   𝑓 (𝑎) [𝑓(𝑏)]−1           ∵   𝑓(𝑎−1) =  [𝑓(𝑎)]−1    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐺   

                            =  𝑒’[𝑒′]−1  =  𝑒’         ∵  𝑓𝑟𝑜𝑚 (1)   

                ∴   𝑓 (𝑎𝑏−1 )  =  𝑒’  ⇒ 𝑎𝑏−1  ∈  𝐾𝑒𝑟 𝑓  

3)  𝐹𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝐺 , 𝑛 ∈  𝐾𝑒𝑟 𝑓 ⇒  𝑥 𝑛 𝑥−1   ∈  𝐾𝑒𝑟 𝑓 

         𝑁𝑜𝑤 𝑓 (𝑥 𝑛𝑥−1 ) =  𝑓( 𝑥 )𝑓( 𝑛 ) 𝑓(𝑥−1)          ∵  𝑓 𝑖𝑠 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚  

                                          =  𝑓( 𝑥 ) 𝑓( 𝑛 )  [𝑓(𝑥)]−1         ∵   𝑓(𝑎−1) =  [𝑓(𝑎)]−1    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐺  

                                        =  𝑓( 𝑥 ) 𝑒′  [𝑓(𝑥)]−1       (  ∵   𝑛 ∈  𝐾𝑒𝑟 𝑓  ⇒   𝑓(𝑛 )  =  𝑒’  )  

                                       =  𝑓( 𝑥 )  [𝑓(𝑥)]−1 = 𝑒′ 

                                   ∴     𝑓 (𝑥 𝑛𝑥−1)  =   𝑒’            𝑖𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠    𝑥 𝑛𝑥−1  ∈  𝐾𝑒𝑟 𝑓.  

                      Hence Kernel of  f is a normal subgroup of G 
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Theorem:  𝐼𝑓 𝑓 ∶  𝐺 →  𝐺’ 𝑖𝑠 𝑎𝑛 𝑜𝑛𝑡𝑜 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑡ℎ𝑒𝑛 𝑝𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝑡  

𝑓 𝑖𝑠 𝐼𝑠𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓  𝐾𝑒𝑟 𝑓 =  { 𝑒 }  

Proof:       ⇒  𝑷𝒂𝒓𝒕  

                     𝐿𝑒𝑡 𝑓 𝑖𝑠 𝑖𝑠𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑡𝑜 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡   𝐾𝑒𝑟 𝑓 =  { 𝑒 } 

                       For all x ∈ Ker f   ⇔   𝑓(𝑥)  =  𝑒’      where   𝑒’  is the identity in G’ 

                                                  ⇔ 𝑓( 𝑥 )  =  𝑓(𝑒)       since 𝑓(𝑒)  =  𝑒’ 

                                                ⇔    𝑥 =  𝑒   since f is one-one function 

                                               ⇔ 𝑥 ∈  { 𝑒 } 

                                  ∴   𝐹𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝐾𝑒𝑟 𝑓   ⇔    𝑥 ∈  { 𝑒 } 

                                            ∴  𝐾𝑒𝑟 𝑓 =  { 𝑒 }  

                  ⇐  𝒑𝒂𝒓𝒕  

  𝐿𝑒𝑡 𝑓 ∶  𝐺 →  𝐺’ 𝑖𝑠 𝑎𝑛 𝑜𝑛𝑡𝑜 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑎𝑛𝑑 𝐾𝑒𝑟 𝑓 =  { 𝑒 } 

                               𝑡𝑜 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝑓 𝑖𝑠 𝑜𝑛𝑒 − 𝑜𝑛𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 .  

                      𝐿𝑒𝑡    𝑓 ( 𝑎 )  =  𝑓( 𝑏 )  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  𝐺  

                             𝑓 ( 𝑎 )[ 𝑓(𝑏)]−1  =  𝑓( 𝑏 )[ 𝑓(𝑏)]−1     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  𝐺  

                         ⇒  𝑓 ( 𝑎 ) 𝑓(𝑏−1)  = 𝑒′                      ( 𝑠𝑖𝑛𝑐𝑒 𝑓(𝑏) 𝑖𝑠 𝑖𝑛 𝐺’ ) 

                            ⇒ 𝑓(𝑎𝑏−1) = 𝑒′                                    ( ∵ 𝑓 𝑖𝑠 𝐻𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚) 

𝐵𝑢𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝐾𝑒𝑟 𝑓  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓  𝑓( 𝑥 )  =  𝑒’  𝑤ℎ𝑒𝑟𝑒 𝑒’  𝑖𝑠 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑖𝑛 𝐺’)   

                        ⇒  𝑎𝑏−1 ∈ 𝐾𝑒𝑟 𝑓 = { 𝑒 } ⇒ 𝑎𝑏−1 = 𝑒 ⇒ 𝑎 = 𝑏                                               

                     ∴  𝑓 𝑖𝑠 𝑜𝑛𝑒 −  𝑜𝑛𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 . 

Theorem:  

      𝐿𝑒𝑡 𝑁 𝑖𝑠 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝 𝐺 𝑎𝑛𝑑 𝐺/𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡 𝑔𝑟𝑜𝑢𝑝 then prove that  

the mapping 𝑓 ∶  𝐺 →  𝐺 / 𝑁 defined by           

                                       𝑓( 𝑥 )  =  𝑁 𝑥  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝐺 

𝑖𝑠 𝑎𝑛 𝑜𝑛𝑡𝑜 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑎𝑛𝑑 𝐾𝑒𝑟 𝑓 =  𝑁  

𝑷𝒓𝒐𝒐𝒇: Given that 𝑓 ∶  𝐺 →  𝐺 / 𝑁 defined by           

                                       𝑓( 𝑥 )  =  𝑁 𝑥  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝐺 

 

                    𝒙                                      𝒇                                     𝑵𝒙         Ny                  Na 

                    G                           

                     𝒚 

 G / N 



                                                                                                                   BSR MATHS GDC RVPM 

1.Clearly it is onto function  

By the definition of f for any Na in G/N ∃ 𝑎 ∈ 𝐺 such that 𝑓( 𝑎 )  =  𝑁 𝑎    

2.f is Homomorphism: 

 For all x, y in G then  

        f ( x y)  =   N x y =   N x N y          (Since N is normal subgroup of G) 

                      =  𝑓( 𝑥 ) 𝑓(  𝑦 )   

              ∴   𝑓 𝑖𝑠 𝐻𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚. 

3.To show that Ker f = N. 

    𝐹𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝐾𝑒𝑟 𝑓   ⇔  𝑓( 𝑥 )  =  𝑁      ( 𝑆𝑖𝑛𝑐𝑒 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝐺 / 𝑁)  

                                      ⇔  𝑁 𝑥 =  𝑁          𝑠𝑖𝑛𝑐𝑒 𝑏𝑦 𝑡ℎ𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓  𝑓   

                                             ⇔  𝑥 ∈  𝑁                   𝑠𝑖𝑛𝑐𝑒   𝑎 ∈  𝐻 ⇔  𝐻𝑎 =  𝐻 =  𝑎𝐻  

                           𝐻𝑒𝑛𝑐𝑒  𝐾𝑒𝑟 𝑓 =  𝑁  

** State and prove Fundamental theorem of Homomorphisms of Groups. 

𝐸𝑣𝑒𝑟𝑦 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 𝑖𝑚𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝 𝑖𝑠 𝑖𝑠𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 𝑡𝑜 𝑠𝑜𝑚𝑒 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝 . 

𝑷𝒓𝒐𝒐𝒇 ∶  

 

                       𝒙                                   𝒇                                                 f(x)    f(y) 

                      G                                                                                                          𝑮 ‘ 

                    𝒚               K                                                                           𝒆 ‘      

                                                                               𝝋 

 

                                      Kx                                 Ky                   Ka 

 

                                                                                                                   G / K 

 𝐿𝑒𝑡 𝐺 𝑎𝑛𝑑 𝐺’ 𝑎𝑟𝑒 𝑡𝑤𝑜 𝑔𝑟𝑜𝑢𝑝𝑠 𝑎𝑛𝑑 𝑓 ∶  𝐺 →  𝐺’ 𝑖𝑠 𝑎𝑛 𝑜𝑛𝑡𝑜 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚     

      𝑡ℎ𝑒𝑛    𝐟(𝐆)  =  𝐆’   𝑖𝑠 𝑡ℎ𝑒 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 𝑖𝑚𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝 𝐺. 

𝐴𝑠 𝑓 ∶  𝐺 →  𝐺’ 𝑖𝑠 𝑎 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚       

    ∴ 𝐾𝑒𝑟 𝑓 =  {  𝑥 ∈   𝐺 ∶  𝑓 ( 𝑥 )  =  𝑒’  𝑤ℎ𝑒𝑟𝑒   𝑒’  𝑖𝑠 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑖𝑛 𝐺’}  𝑒𝑥𝑖𝑠𝑡  

𝐿𝑒𝑡 𝐾𝑒𝑟 𝑓  =  𝐾        𝑏𝑢𝑡 𝑘𝑒𝑟𝑛𝑒𝑙 𝑜𝑓 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑖𝑠 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝐺.  

                   ∴  𝐺 / 𝐾  =  {  𝐾 𝑥 ∶  𝑥  ∈  𝐺 } 𝑖𝑠 𝑎 𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡 𝐺𝑟𝑜𝑢𝑝 .  

                        To show that G / K is Isomorphic to G’ 

𝐷𝑒𝑓𝑖𝑛𝑒 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝜑 ∶  𝐺 / 𝐾 →  𝐺’             𝑏𝑦 𝝋 (𝒙)  =  𝑲𝒙   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈   𝐺.  
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1) First to show that 𝝋 is well defined function from G / K → G’: 

      𝐹𝑜𝑟 𝑎𝑙𝑙 𝐾𝑥, 𝐾𝑦 𝑖𝑛 𝐺/𝐾 

   𝐿𝑒𝑡 𝐾𝑥 =  𝐾𝑦 ⇒   𝑥𝑦−1 ∈ K                ( Ha = Hb ⇔ 𝑎𝑏−1 ∈ 𝐻 ) 

                          ⇒ 𝑥𝑦−1 ∈ Ker f                 ( Since Ker f  = K) 

                       ⇒ f ( 𝑥𝑦−1) = 𝑒’ 

                      ⇒ 𝑓 ( 𝑥 ) 𝑓 ( 𝑦−1)  =  𝑒’     (𝑠𝑖𝑛𝑐𝑒 𝑓 𝑖𝑠 𝐻𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚)  

                   ⇒  𝑓 ( 𝑥 )  [ 𝑓 ( 𝑦 )]−1  =  𝑒’    

                   ⇒  𝑓 ( 𝑥 )   =  𝑓 ( 𝑦 )   

                  ⇒  𝜑( 𝐾𝑥 )  =   𝜑(𝐾𝑦 )  

              ∴    𝜑 𝑖𝑠 𝑤𝑒𝑙𝑙 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛   

2) 𝜑 𝑖𝑠 𝑜𝑛𝑒 − 𝑜𝑛𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐺 / 𝐾 →  𝐺’:   

      𝐹𝑜𝑟 𝑎𝑙𝑙 𝐾𝑥, 𝐾𝑦 𝑖𝑛 𝐺/𝐾  

   𝐿𝑒𝑡 𝜑( 𝐾𝑥 )  =   𝜑(𝐾𝑦 ) ⇒  𝑓 ( 𝑥 )   =  𝑓 ( 𝑦 )  

                                             ⇒ 𝑓 ( 𝑥 ) [ 𝑓 ( 𝑦 )]−1 = 𝑓 ( 𝑦 )  [ 𝑓 ( 𝑦 )]−1                                  

                                             ⇒ 𝑓 ( 𝑥 ) 𝑓( 𝑦 −1)  =  𝑒’      𝑠𝑖𝑛𝑐𝑒 𝑓 (𝑦) 𝑖𝑛 𝐺’ 𝑎𝑛𝑑 𝑖𝑠 𝐻𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 

                                          ⇒  𝑓 ( 𝑥 𝑦−1 )  =  𝑒’ 

                                         ⇒  𝑥𝑦−1  ∈  𝐾𝑒𝑟 𝑓                      𝑏𝑢𝑡 𝐾𝑒𝑟 𝑓  =  𝐾 

                                        ⇒  𝑥𝑦−1  ∈  𝐾                         

                                      ⇒    𝐾𝑥 =  𝐾𝑦. 

                                  ∴    𝜑 𝑖𝑠   𝑜𝑛𝑒 − 𝑜𝑛𝑒      

3) 𝜑 𝑖𝑠 𝑜𝑛𝑡𝑜:  

𝐴𝑠  𝜑 ∶  𝐺/𝐾 →  𝐺’ =  𝑓(𝐺)  𝑖𝑠 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑎𝑛𝑦  𝑦 =  𝑓(𝑥)  ∈  𝐺’ 𝑎𝑛𝑑 𝑓 𝑖𝑠 𝑜𝑛𝑡𝑜  

∃ 𝑥 ∈  𝐺 ⇒  𝐾  𝑥  ∈  𝐺/𝐾 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   

                                     𝜑 ( 𝐾𝑥 )  =  𝑦 =  𝑓 ( 𝑥 )   

                                           ⇒  𝜑 𝑖𝑠 𝑜𝑛𝑡𝑜. 

4). 𝝋 is Homomorphism: 

 𝐹𝑜𝑟 𝑎𝑙𝑙  𝐾 𝑥, 𝐾 𝑦 𝑖𝑛 𝐺/𝐾   

𝑇𝑜 𝑣𝑒𝑟𝑖𝑓𝑦 𝑡ℎ𝑎𝑡   𝜑 [(𝐾 𝑥) (𝐾 𝑦 )]  =  𝜑 (𝐾 𝑥)  𝜑 (𝐾 𝑦 )   

𝐿𝐻𝑆 =  𝜑 [(𝐾 𝑥) (𝐾 𝑦 )]  =  𝜑 [𝐾 𝑥 𝑦 ]            𝑠𝑖𝑛𝑐𝑒 𝐾 𝑖𝑠 𝑁𝑜𝑟𝑚𝑎𝑙 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝐺  

                                     =  𝑓( 𝑥 𝑦 )                      𝑏𝑦 𝑡ℎ𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓  𝜑  

                                    =  𝑓( 𝑥 ) 𝑓( 𝑦 )                    𝑠𝑖𝑛𝑐𝑒 𝑓 𝑖𝑠 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚  

                                   =  𝜑 (𝐾 𝑥 ) 𝜑 (𝐾 𝑦 )  =  𝑅𝐻𝑆  

                𝐻𝑒𝑛𝑐𝑒 𝜑 𝑖𝑠 𝑎𝑛 𝑖𝑠𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑎𝑛𝑑 𝑮 / 𝑲   ≅   𝑮’ 
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Result: 𝑆ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑎 → 𝑎−1 𝑖𝑠 𝐴𝑢𝑡𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑜𝑛 𝐺  𝑖𝑓𝑓  𝐺 𝑖𝑠 𝑎𝑏𝑒𝑙𝑖𝑎𝑛. 

𝑃𝑟𝑜𝑜𝑓:   

        ⇒  𝑝𝑎𝑟𝑡   𝑠𝑢𝑝𝑝𝑜𝑠𝑒 𝑓: 𝐺 →  𝐺 𝑖𝑠 𝑎𝑛 𝐴𝑢𝑡𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦   

                                                 𝑓(𝑎) =  𝑎−1   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈  𝐺  

                  𝑡𝑜 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝐺 𝑖𝑠 𝑎𝑏𝑒𝑙𝑖𝑎𝑛 𝑔𝑟𝑜𝑢𝑝  

              𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  𝐺 𝑎𝑛𝑑 𝑓 𝑖𝑠 𝐻𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚   

                                           ∴  𝑓 (𝑎 𝑏)  =  𝑓(𝑎) 𝑓(𝑏)  

                                             ⇒  (𝑎𝑏)−1   =  𝑎−1  𝑏−1  

                                           ⇒   (𝑎𝑏)−1     =   (𝑏𝑎)−1     

                                          ⇒    𝑎 𝑏       =   𝑏 𝑎             

                                ∴  𝐺 𝑖𝑠 𝑎𝑏𝑒𝑙𝑖𝑎𝑛 𝑔𝑟𝑜𝑢𝑝. 

⇐  𝑝𝑎𝑟𝑡    𝑠𝑢𝑝𝑝𝑜𝑠𝑒 𝐺 𝑖𝑠 𝑎𝑏𝑒𝑙𝑖𝑎𝑛 𝑔𝑟𝑜𝑢𝑝  𝑇𝑜 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝑓 𝑖𝑠 𝐴𝑢𝑡𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚  

           1) 𝑜𝑛𝑒 − 𝑜𝑛𝑒: 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  𝐺  

      𝐿𝑒𝑡    𝑓(𝑎) =  𝑓(𝑏) ⇒  𝑎−1 = 𝑏−1  

                                                                                       ⇒   (𝑎−1)−1 = (𝑏−1)−1  

                                                                                           ⇒  𝑎 =  𝑏   

2)𝑜𝑛𝑡𝑜:  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑦  ∈  𝐺   ∃  𝑥 ∈  𝐺 ⇒  𝑥 −1  ∈  𝐺( 𝐺𝑟𝑜𝑢𝑝) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦 =  𝑓(𝑥)  =  𝑥−1   ∈  𝐺. 

3) 𝐻𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚: 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  𝐺   

               𝑓(𝑎 𝑏) = (𝑎𝑏)−1 = (𝑏𝑎)−1   =  𝑎−1𝑏−1 = 𝑓(𝑎)𝑓(𝑏)  ( 𝑠𝑖𝑛𝑐𝑒 𝐺 𝑖𝑠 𝑎𝑏𝑒𝑙𝑖𝑎𝑛 𝑔𝑟𝑜𝑢𝑝 ) 

                                            𝐻𝑒𝑛𝑐𝑒 𝑓 𝑖𝑠 𝐴𝑢𝑡𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚   

 

 

                                   ******* 
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Permutation Groups 

                                                                            - B SRINIVASARAO.GDC RVPM 

Definition: A one -one and onto function from a finite set S into S is called a permutation. 

    If S = {1,2,3,4,5,6} and f: S→ 𝑆 is one-one and onto function then the permutation is denoted 

by  

                         𝑓 = (
1     2    3   4     5     6
3    4     1   2    6     5

)  

Product of two permutations: 

If  𝑓 = (
1     2    3   4     5     6
5    4     1   3    6     2

)     𝑔 = (
1     2    3   4     5     6
3    5     2   6    4     1

)   

Then 𝑓𝑔 = (
1     2    3   4     5     6
5    4     1   3    6     2

) 

              = (
1     2    3   4     5     6
4    6     3   2    1     5

) 

𝑔𝑓 = (
1     2    3   4     5     6
3    5     2   6    4     1

) (
1     2    3   4     5     6
5    4     1   3    6     2

)  

      = (
1     2    3   4     5     6
1    6     4   2    3     5

) 

                        Clearly 𝑓𝑔 ≠ 𝑔𝑓 

Identity Permutation: A permutation is in the form  

                (
1     2    3   4     5     6
1    2     3   4    5     6

) is called Identity permutation. 

Inverse of a permutation: 

If 𝑓 = (
1     2    3   4     5     6
5    4     1   3    6     2

)  𝑡ℎ𝑒𝑛 𝑖𝑡𝑠 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑖𝑠 (
5     4    1   3     6     2
1    2     3   4    5     6

)  𝑜𝑟 

                      𝑓−1 = (
1     2    3   4     5     6
3    6    4    2     1     5

)  

Note that 𝑓. 𝑓−1 = (
1     2    3   4     5     6
5    4     1   3    6     2

) (
1     2    3   4     5     6
3    6    4    2     1     5

) 

                          = (
1     2    3   4     5     6
1    2     3   4    5     6

) 

Note: If a finite set S containing n elements, then the number permutations formed from S into S 

are n!  
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Note: The set of permutations form a group w r t permutation multiplication and is called 

permutation group. 

Cyclic Permutation: A permutation is in the form  

                      (
1     2    3   4     5     6
2    3     4   5    6     1

) of length 6 and is simply denoted by ( 1  2   3   4    5  6 ). 

And 𝑓 = (
1     2    3   4     5     6   7     8    9
2    3     4   5    6     1    8    9     7

) Is also cyclic and is denoted by (1 2 3 4 5 6) (7 8 9 ) 

 

Also 𝑓 = (
1     2    3   4     5     6   7     8    9
2    3     1   4    5     7    8    6     9

)  𝑖𝑠 𝑐𝑦𝑐𝑙𝑖𝑐 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 (1 2 3)(4)(5)(6 7 8)(9)  

It’s length 3 + 3 = 6. 

Cyclic permutations: There no common element between two cycles called disjoint 

              cycles. 

That is      f = (
1     2    3   4    
2    3    4   1    

) (
5     6    7   8     9   
6    7     8   9    1   

) are disjoint cycles. 

Transposition: A transposition is cyclic permutation of length 2. 

Example: (
1    2
2     1

) = (1 2), (
2    3
3     2

) = (2  3)  𝑒 𝑡 𝑐    

Note: ( 1  2   3   4    5  6 ) = (1 2)(1 3)(1 4)(1 5)(1 6) 

Even and Odd permutations: 

   A permutation f said to be Even if  f can be expressed as even number of transpositions and it  

  can be expresses as odd number of transpositions then it is Odd permutation. 

Example:1 If f = (1   2     3     4     5    6    7 ) = (1  2) (1 3) (1  4) (1  5) (1  6) (1  7) 

         Number of transpositions = 6 so, it is even permutation 

Example:2 If f = (1   2     3     4     5    6) = (1  2) (1 3) (1  4) (1  5) (1  6)  

         Number of transpositions = 5 so, it is Odd permutation. 

Problems: 

If write the permutations into disjoint cycles  

1. ( 1  3  2 )( 5  6  7 )( 2  6  1)( 4  5) 

2. ( 1  3  6 )( 1  3  5  7 )( 6  7)( 1  2  3  4 ) 
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Solution: 1. Given that f = ( 1  3  2 )( 5  6  7 )( 2  6  1)( 4  5) 

                                      = (
1     3    2   
3    2    1   

) (
5  6  7  
6  7  5  

) (
2   6   1

   6   1   2    
) (

4   5
5   4

)   

                                     = (
1     2       3     4      5     6     7
3    2     6     5      1       7    4

)  

                                  f = (
1     3    6   7    4    5 
3    6    7   4    5     1

) (
2
2

) = ( 1  3  6   7  4  5 )(2)𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑐𝑦𝑐𝑙𝑒𝑠  

               2.Given that  f = ( 1  3  6 )( 1  3  5  7 )( 6  7)( 1  2  3  4 ) 

                                      = (
1     3    6   
3    6    1   

) (
1   3   5   7  
3   5   7   1  

) (
6   7
7   6

) (
1   2   3   4
2    3   4   1

)   

                                     = (
1     2       3     4      5     6     7
5    3      7      1     6       4    2

)  

                                   f = (
1     5    6   4  
5    6    4   1  

) (
2   3    7
3   7     2

) = ( 1  5  6    4 )(2     3   7)𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑐𝑦𝑐𝑙𝑒𝑠  

Note: The inverses of above permutations are  

            1.𝑓−1 = ( 5   4   7    6    3  1)(2)     2.𝑓−1 = (4   6   5   1)( 7   3   2) 

If write the permutations into disjoint cycles and find whether they are Even or Odd 

1. ( 1  3  2 )( 5  6  7 )( 2  6  1)( 4  5) 

2. ( 1  3  6 )( 1  3  5  7 )( 6  7)( 1  2  3  4 ) 

Solution: 1. Given that f = ( 1  3  2 )( 5  6  7 )( 2  6  1)( 4  5) 

                                      = (
1     3    2   
3    2    1   

) (
5  6  7  
6  7  5  

) (
2   6   1

   6   1   2    
) (

4   5
5   4

)   

                                     = (
1     2       3     4      5     6     7
3    2     6     5      1       7    4

)  

                                  f = (
1     3    6   7    4    5 
3    6    7   4    5     1

) (
2
2

) = ( 1  3  6   7  4  5 )(2)𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑐𝑦𝑐𝑙𝑒𝑠  

Again f = ( 1  3  6   7  4  5 )(2) = ( 1  3)(1  6)(1  7)(1  4)(1  5)(2) 

Number of transpositions = 4   Even permutation 

               2.Given that  f = ( 1  3  6 )( 1  3  5  7 )( 6  7)( 1  2  3  4 ) 

                                      = (
1     3    6   
3    6    1   

) (
1   3   5   7  
3   5   7   1  

) (
6   7
7   6

) (
1   2   3   4
2    3   4   1

)   

                                     = (
1     2       3     4      5     6     7
5    3      7      1     6       4    2

)  

                                   f = (
1     5    6   4  
5    6    4   1  

) (
2   3    7
3   7     2

) = ( 1  5  6    4 )(2     3   7)𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑐𝑦𝑐𝑙𝑒𝑠  
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Again f =( 1  5  6    4 )(2     3   7) = (1  5)(1  6)(1  4)(2  3)(2  7) 

                    Number of transpositions = 5   Odd permutation 
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RING THEORY 
 

                                                                                   By B. Srinivas Rao.  Lecturer in Mathematics.                                                                             

RINGS-I 

                                                                                    UNIT – 1 
     Definition of Ring and basic properties, Boolean Rings, divisors of zero and cancellation 

laws Rings, Integral Domains, Division Ring and Fields, The characteristic of a ring - The 

characteristic of an Integral Domain, The characteristic of a Field. Sub Rings, Ideals 

 

           Definition (Ring). 

         A non-empty ser R is said to be a ring w.r.t two binary operations (+) and multiplication(.) if it 

satisfies the following properties  

I.R is an abelian group under addition 

   (1). For all a, b ∈R then a+ b ∈ R     (Closure )  

(2) (Associativity) For all a, b and c in R, (a + b) + c = a + (b + c). 

(3) For any a ∈R There is an element 0 ∈ R(identity) such that for all a in R a + 0 = 0 + a = a. 

(4) For all a in R, there exists b ∈ R such that a + b = b + a = 0. b will be denoted −a. 

(5) For all a and b in R, a + b = b + a. 

II Semi-Group w r t Multiplication. 

(6) For all a, b ∈R then a . b ∈ R 

(7) For all a, b and c in R, (a · b) · c = a · (b · c). 

III (8) (Distributivity Properties) 

For all a, b and c in R, we have a · ( b + c ) = a · b + a · c  ( Left Distributive law) 

( b + c ) · a = b · a + c · a ( Right Distributive Law) 

Example: The set of Integers Z = {. . . . . -3, -2, -1, 0, 1, 2, 3, . . . . . } is a Ring w r t Addition and 

multiplication. 

Example: The set of Rationales Q= { 𝑝/𝑞 ∶  𝑝, 𝑞 ∊  𝑍 , 𝑞 ≠ 0 } is also Ring w r t Addition and 
multiplication. 

General properties on rings: 

 Let R is a ring then prove that for all a, b, c ∈ R then 

     1. 𝑎 0 =  0 = 0 𝑎          2. 𝑎 (−𝑏 )  = − ( 𝑎 𝑏 )  =  (−𝑎 ) 𝑏 
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    3. ( −𝑎 )( −𝑏 ) = 𝑎𝑏 4. 𝑎(𝑏 −  𝑐)  = 𝑎𝑏 –  𝑎𝑐 

Proof: 1. 𝐴𝑠 𝑎 0 =  𝑎( 0 +  0 ) = 𝑎0 +  𝑎 0         ( ∵  𝑎 ( 𝑏 +  𝑐 ) =  𝑎 𝑏 +  𝑎 𝑐 𝑖𝑛 𝑅 ) 

∴  𝑎 0 =  𝑎0 +  𝑎 0  

     ⇒  0 +  𝑎 0 =  𝑎0 +  𝑎 0           ∵  𝑎 =  𝑎 +  0  𝑖𝑛 𝑅 

                           ⇒ 0 = a 0         ∵ By cancellation. 

                           𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝑡𝑜 𝑝𝑟𝑜𝑣𝑒 0 𝑎 =  0  

2. 𝐴𝑠 0 =  𝑎0 =  𝑎[ 𝑏 + (−𝑏)]  =  𝑎 𝑏 +  𝑎(−𝑏) 

∴ 0 =  𝑎 𝑏 +  𝑎(−𝑏) --- (1) 

Again 0 =  𝑎0 =  𝑎[ (−𝑏)  +  𝑏 ]  =  𝑎 (−𝑏 ) +  𝑎 𝑏 

           ∴  0 =  𝑎(− 𝑏 ) +  𝑎 𝑏     -----(2) 

𝐹𝑟𝑜𝑚 (1) 𝑎𝑛𝑑(2) 𝑎 𝑏 +  𝑎(−𝑏) = 0 =  𝑎(− 𝑏 ) +  𝑎 𝑏 

                                             ⇒  𝑎 (−𝑏 )  = − ( 𝑎 𝑏 ) 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑡𝑜 𝑝𝑟𝑜𝑣𝑒 (−𝑎 )𝑏 =  − ( 𝑎 𝑏 ) . 

3. ( −𝑎 )( −𝑏 ) = (−𝑎 )𝑥 =  −( 𝑎 𝑥 )        𝑤ℎ𝑒𝑟𝑒 𝑥 =  −𝑏 𝑎𝑛𝑑 ∵  (−𝑎 ) 𝑏 =  − ( 𝑎 𝑏 ) 

                 =  −[𝑎 (−𝑏)] 

      =  −[−(𝑎 𝑏)]( ∵  𝑎 (−𝑏 )  = − ( 𝑎 𝑏 ) 

                                              =  𝑎 𝑏  

4. 𝑎 ( 𝑏 −  𝑐)  =  𝑎 [𝑏 + (− 𝑐)] = 𝑎 𝑏 + 𝑎 (−𝑐)( ∵  𝑏𝑦 𝑙𝑒𝑓𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑙𝑎𝑤 ) 

                                                             = 𝑎 𝑏 –  𝑎𝑐 .  

𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛: ( 𝑍𝑒𝑟𝑜 𝑑𝑖𝑣𝑖𝑠𝑜𝑟𝑠)  

      𝐴 𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑎 ≠ 0 ∈  𝑅 𝑖𝑠 𝑠𝑎𝑖𝑑 𝑡𝑜 𝑏𝑒 𝑧𝑒𝑟𝑜 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑖𝑓 

∃ 𝑏 ≠ 0 ∈  𝑅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎 𝑏 =  0.    
 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒: 𝐼𝑛 𝑡ℎ𝑒 𝑟𝑖𝑛𝑔 𝑜𝑓 2 × 2 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑅  

𝐴 =  [
1    0
 0     0

] ≠ 0, 𝐵 = [
0     0
0      1

]  ≠ 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐴𝐵 =  [
0      0
0       0

] = 0 

               ⇒ A and B are Zero divisors. 

𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛: ( 𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝑍𝑒𝑟𝑜 𝑑𝑖𝑣𝑖𝑠𝑜𝑟𝑠):  

        In a ring R for any a , b ∈ R if a b = 0 ⇒ either a= or b=0 then we say a, b are without zero 

divisors. or if a ≠ 0 and b≠ 0 then a b ≠ 0 in the ring R. 

Example: In the ring of integers Z for any a = 5 ≠ 0,  b=8 ≠ 0    then a b = 5× 8 = 40 ≠ 0. 
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Definition (Integral domain) :  

                  𝐴 𝑟𝑖𝑛𝑔 <  𝐷, +, . >  𝑖𝑠 𝑠𝑎𝑖𝑑 𝑡𝑜 𝑏𝑒 𝑎𝑛 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑓 𝑖𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠  

1. 𝑈𝑛𝑖𝑡𝑦 (1 ∈  𝐷 ) 

2. 𝐶𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒 𝑤 𝑟 𝑡 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑒 𝑎𝑏 =  𝑏 𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  𝐷 

       3.𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝑧𝑒𝑟𝑜 𝑑𝑒𝑣𝑖𝑠𝑜𝑟𝑠 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑖𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  𝐷 𝑖𝑓 𝑎 𝑏 = 0 𝑡ℎ𝑒𝑛  

𝑎 =  0 𝑜𝑟 𝑏 =  0. 𝑜𝑟 𝑖𝑓 𝑎 ≠ 0, 𝑏 ≠ 0 𝑡ℎ𝑒𝑛        𝑎𝑏 ≠  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  𝐷    

 

   𝐸𝑥𝑎𝑚𝑝𝑙𝑒: 1. 𝑇ℎ𝑒 𝑟𝑖𝑛𝑔 𝑜𝑓 𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑍 =  { . . . . . −3, −2, −1,0,1,2,3, } 𝑓𝑜𝑟𝑚 𝑎𝑛 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑑𝑜𝑚𝑎𝑖𝑛 . 

      𝐸𝑥𝑎𝑚𝑝𝑙𝑒: 2. 𝑇ℎ𝑒 𝑟𝑖𝑛𝑔 𝑜𝑓 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑄 , 𝑇ℎ𝑒 𝑟𝑖𝑛𝑔 𝑜𝑓 𝑅𝑒𝑎𝑙𝑠 𝑅 𝑎𝑟𝑒 𝑎𝑙𝑠𝑜 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑑𝑜𝑚𝑎𝑖𝑛𝑠.   

Definition (Field) :  

    𝐴 𝑟𝑖𝑛𝑔 <  𝐹, +, . >  𝑖𝑠 𝑠𝑎𝑖𝑑 𝑡𝑜 𝑏𝑒 𝑎 𝐹𝑖𝑒𝑙𝑑 𝑖𝑓 𝑖𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠  

1. 𝑈𝑛𝑖𝑡𝑦 ( 1 ∈  𝐷 ) 

2. 𝐶𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒 𝑤𝑟𝑡 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑒 𝑎𝑏 = 𝑏 𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  𝐷 

         3. 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ≠  0 ∈  𝐹 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 a-1∈ F such that  

                                     a.a-1 = 1 = a-1 a. 
Example: 

1. The ring of Integers Z = {. . . . . -3, -2, -1, 0, 1, 2, 3, . . . . . } is not a field since multiplicative 

inverse property does not exist. Since for a = 3 ∈ Z then 𝑎−1 =
1

3
 ∉ 𝑍 

2. The ring of rational Q , The ring of Real numbers  R  are Fields and the ring of Complex 

numbers form a  field 𝑖 𝑒 { 𝑥 +  𝑖𝑦 / 𝑥, 𝑦 ∈  𝑅 𝑎𝑛𝑑 𝑖 =  √−1 }. 

𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑅𝑖𝑛𝑔 𝑜𝑟 𝑆𝑘𝑒𝑤 𝑓𝑖𝑒𝑙𝑑:  

      𝐴 𝑟𝑖𝑛𝑔 <  𝑅 , +, . >  𝑖𝑠 𝑠𝑎𝑖𝑑 𝑡𝑜 𝑏𝑒 𝑎 𝑠𝑘𝑒𝑤 𝐹𝑖𝑒𝑙𝑑 𝑖𝑓 𝑖𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 

1.Unity ( 1 ∈ R ) 

       2.Multiplicative Inverse Property for all a ≠0 ∈ F there exist a-1∈ R such that a.a-1 =1 = a-1a.       

   Example: The ring of Non-singular matrices forms a skew field 

Boolean Ring:  A Ring R is Said to be a Boolean Ring if it satisfies Idempotent property                                                                                                

𝑇ℎ𝑎𝑡 𝑖𝑠  𝑓𝑜𝑟 𝑎𝑙𝑙   𝑎 ∈  𝑅 𝑡ℎ𝑒𝑛 𝑎2 = 𝑎 

Theorem: 

Prove that in a ring R without zero divisors if and only if cancellation laws.  
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𝑃𝑟𝑜𝑜𝑓: ⇒  𝑝𝑎𝑟𝑡  

𝐿𝑒𝑡 𝑅 ℎ𝑎𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑧𝑒𝑟𝑜 𝑑𝑖𝑣𝑖𝑠𝑜𝑟𝑠 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤𝑠  

𝐹𝑜𝑟 𝑎𝑛𝑦 𝑎 ≠ 0, 𝑏, 𝑐 ∈  𝑅  

                𝐼𝑓 𝑎 𝑏 =  𝑎 𝑐  ⇒  𝑏 = 𝑐 ( 𝐿𝑒𝑓𝑡 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤)  

 𝐼𝑓 𝑏 𝑎 =  𝑐 𝑎 ⇒  𝑏 = 𝑐 (𝑅𝑖𝑔ℎ𝑡 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤) 

 𝐼𝑓 𝑎 𝑏 =  𝑎 𝑐 ⇒  𝑎 𝑏 −  𝑎 𝑐 = 0  

                                          ⇒  𝑎 ( 𝑏 −   𝑐)  = 0  
𝐵𝑦 𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝑍𝑒𝑟𝑜 𝐷𝑖𝑣𝑖𝑠𝑜𝑟𝑠 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦  

𝐸𝑖𝑡ℎ𝑒𝑟 𝑎 =  0 𝑜𝑟 𝑏 −  𝑐 =  0   𝑏𝑢𝑡 𝑎 ≠ 0 ∴  𝑏 –  𝑐 =  0 ⇒   𝑏 =  𝑐 .  
 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑡𝑜 𝑝𝑟𝑜𝑣𝑒 𝑅𝑖𝑔ℎ𝑡 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤.  

⇐  𝑃𝑎𝑟𝑡  
 

𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤𝑠 ℎ𝑜𝑙𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑖𝑛𝑔 𝑅.  

𝑇𝑜 𝑓𝑖𝑛𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑧𝑒𝑟𝑜 𝑑𝑖𝑣𝑖𝑠𝑜𝑟𝑠 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦  

  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑎, 𝑏 ∈  𝑅 𝐿𝑒𝑡 𝑎 𝑏 =  0 𝑎𝑛𝑑 𝑎 ≠ 0, 𝑏 ≠ 0.  

⇒  𝑎 𝑏 =  𝑎0 ⇒  𝑏 = 0 ( ∵  𝑏𝑦 𝐿𝑒𝑓𝑡 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤 ) 

                                                       𝐵𝑢𝑡 𝑏 ≠ 0 𝑖𝑡 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛  

                       ∴  𝑎 =  0 𝑜𝑟 𝑏 =  0.  

Theorem: 

𝑃𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝑡 𝑒𝑣𝑒𝑟𝑦 𝑓𝑖𝑒𝑙𝑑 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑑𝑜𝑚𝑎𝑖𝑛 . 𝑎𝑙𝑠𝑜 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝑢𝑠𝑖𝑛𝑔 𝑎𝑛 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑟𝑢𝑒 

 𝑃𝑜𝑜𝑓: 𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝐹 𝑖𝑠 𝑎 𝑓𝑖𝑒𝑙𝑑 𝑖𝑒 𝐼𝑡 𝑖𝑠 𝑎 𝑟𝑖𝑛𝑔 ℎ𝑎𝑣𝑖𝑛𝑔  

1. 𝐶𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒,    

2. 𝑢𝑛𝑖𝑡𝑦 𝑎𝑛𝑑  

                             3. 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦  

, 

𝑇𝑜 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝐹 𝑖𝑠 𝑎𝑛 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑑𝑜𝑚𝑎𝑖𝑛 𝑇ℎ𝑎𝑡 𝑖𝑠 𝑜𝑛𝑙𝑦 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑧𝑒𝑟𝑜 𝑑𝑖𝑣𝑖𝑠𝑜𝑟𝑠 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑖𝑛 𝐹. 

 𝑖𝑒 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑎 , 𝑏 ∈  𝐹 𝑖𝑓 𝑎 𝑏 = 0 ⇒  𝑎 =  0 𝑜𝑟 𝑏 =  0.  

𝐶𝑎𝑠𝑒 − 1 𝑙𝑒𝑡 𝑎 𝑏 = 0 𝑎𝑛𝑑 𝑎 ≠  0 ∈  𝐹( ∵  𝑎 ≠  0 ∈  𝐹 ( 𝑓𝑖𝑒𝑙𝑑)  ⇒ 𝑎−1  ∈  𝐹 ) 

⇒  𝑎−1(𝑎 𝑏 )  =  𝑎−1 0 = 0  

⇒  ( 𝑎−1 𝑎 ) 𝑏 =  0  

⇒  ( 1 ) 𝑏 =  0  

⇒  𝑏 =  0.  
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𝐶𝑎𝑠𝑒 − 2 𝑙𝑒𝑡 𝑎 𝑏 = 0 𝑎𝑛𝑑 𝑏 ≠  0 ∈  𝐹   ( ∵ b ≠ 0 ∈ F ( field) ⇒ b-1 ∈ F ) 

⇒ (a b ) b-1 = 0 b-1 =0 

⇒ a (b b-1) = 0 

⇒ a (1) = 0 

⇒ a = 0. ∴ For all a , b ∈ F if a b =0 ⇒ a = 0 or b = 0 

𝐻𝑒𝑛𝑐𝑒 𝐹 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑑𝑜𝑚𝑎𝑖𝑛.  

Example:  The ring of Integers Z = {. . . . . -3, -2, -1, 0, 1, 2, 3, . . . . . } is an integral domain but 

not a field since multiplicative inverse property does not exist. Since for a= 3 ∈ Z then a-1 = 1/3 

is not in Z 

Theorem : Prove that every finite Integral domain is a Field. 

Proof: Suppose D = {𝑎1,   𝑎2 , 𝑎3 , … … ..   𝑎𝑛}  𝑤ℎ𝑒𝑟𝑒  𝑎𝑖 ≠  𝑎𝑗  𝑓𝑜𝑟 𝑖 ≠ 𝑗 ------(1) 

          𝑖𝑠 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑑𝑜𝑚𝑎𝑖𝑛 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  

  𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝐷 𝑖𝑠 𝑎 𝑟𝑖𝑛𝑔 ℎ𝑎𝑣𝑖𝑛𝑔 𝑈𝑛𝑖𝑡𝑦 𝐶𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝑧𝑒𝑟𝑜 𝑑𝑒𝑣𝑖𝑠𝑜𝑟𝑠 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

𝑇𝑜 𝑆ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝐷 𝑖𝑠 𝑎 𝑓𝑖𝑒𝑙𝑑 𝑖𝑒 𝑜𝑛𝑙𝑦 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦.   

                         ie for all a ≠ 0 ∈ D there exist a-1 ∈ D such that a.a-1 =1 = a-1 a . 

Consider a set a D = { 𝑎 𝑎1, 𝑎𝑎2, 𝑎 𝑎3. . . . . . . , 𝑎 𝑎𝑛 } is also contained in D (∵ Closure in D ) 
  

                                 Since for 𝑎 𝑎𝑖 = 𝑎 𝑎𝑗          𝑓𝑜𝑟 𝑖 ≠  𝑗  

                                             ⇒  𝑎 𝑎𝑖 –  𝑎 𝑎𝑗 = 0   𝑓𝑜𝑟 𝑖 ≠  𝑗  

   ⇒  𝑎 (𝑎 𝑖 –  𝑎 𝑗 )   =  0  𝑓𝑜𝑟 𝑖 ≠  𝑗  

                        ⇒  𝑎 =  0 𝑜𝑟 (𝑎 𝑖 –  𝑎 𝑗 ) =  0 𝑓𝑜𝑟 𝑖 ≠  𝑗 ( by Without zero devisors property) 

                                                                             𝐵𝑢𝑡 𝑎 ≠ 0  ∴  (𝑎 𝑖 –  𝑎 𝑗 ) =  0 𝑓𝑜𝑟 𝑖 ≠  𝑗 

  ⇒  𝑎 𝑖 =  𝑎 𝑗    𝑓𝑜𝑟 𝑖 ≠  𝑗 𝑠𝑖𝑛𝑐𝑒 (1)  

∴  𝑎 𝐷 𝑎𝑛𝑑 𝐷 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ⇒  𝑎 𝐷 =  𝐷, 𝑏𝑢𝑡 1 ∈  𝐷 ⇒  1 ∈  𝑎 𝐷 

                By the definition of  a D ∃ 𝑎𝑘 ∈ D such that 1 = 𝑎𝑎𝑘 =  𝑎𝑘𝑎 

It follows  𝑎𝑘   is the inverse of  𝑎 ∈  𝐷 Inverse property exist 

Hence D is a Field. 
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Theorem:    In a ring R for all a∈ R , a 2 = a ( idempotent law) , prove that  

1. 𝑎 +  𝑎 =  0                                        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈  𝑅 

2. 𝑖𝑓 𝑎 +  𝑏 =  𝑜 𝑡ℎ𝑒𝑛 𝑎 =  𝑏                 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  𝑅 

3. 𝑅 𝑖𝑠 𝑎 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒 𝑟𝑖𝑛𝑔. 

Proof: 1. for all a ∈ R ⇒ for all a, a ∈ R ⇒ a + a ∈ R 

Let a + a= x ∈ R 

By idempotent property x 2 = x 

  ⇒ ( a + a ) 2 = a + a 

⇒  ( 𝑎 +  𝑎 )( 𝑎 +  𝑎 ) =  𝑎 +  𝑎.  

⇒  𝑎 ( 𝑎 +  𝑎 )  +  𝑎 ( 𝑎 +  𝑎 ) =  𝑎 +  𝑎.  

 ⇒ a 2 + a 2 + a 2 + a 2 = a + a. 

⇒  𝑎 +  𝑎 +  𝑎 +  𝑎 =  𝑎 +  𝑎 +  0           ( ∵  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈  𝑅 , a 2 = a ) 

⇒ 𝑎 +  𝑎 =  0( ∵  𝐶𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤)  

2.𝐺𝑖𝑣𝑒𝑛  𝑎 +  𝑏 =  0 =  𝑎 +  𝑎( ∵   𝑎 +  𝑎 =  0 )    

                         ⇒  𝑏 =  𝑎  𝑖. 𝑒. 𝑎 =  𝑏  

2. R is a commutative ring. 

for all a, b ∈ R ⇒ a + b ∈ R 

     Let 𝑎 +  𝑏 =  𝑥 ∈ R 

By idempotent property 𝑥 2 = 𝑥 

⇒( 𝑎 +  𝑏 ) 2 = 𝑎 +  𝑏 

⇒( 𝑎 +  𝑏)( 𝑎 +  𝑏 ) =  𝑎 +  𝑏. 

⇒ 𝑎( 𝑎 +  𝑏 )  +  𝑏( 𝑎 +  𝑏 ) =  𝑎 +  𝑏. 

⇒ 𝑎 2 + 𝑎 𝑏 +  𝑏 𝑎 + 𝑏 2 = 𝑎 +  𝑏. 

⇒ 𝑎 +  𝑎 𝑏 +  𝑏 𝑎 +  𝑏 =  𝑎 +  𝑏 ( ∵ for all a ∈ R , a 2 = a ) 

⇒  𝑎 𝑏 +  𝑏 𝑎 =  0( ∵  𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑤)  

⇒  𝑎 𝑏 =  𝑏 𝑎( ∵  𝑖𝑓 𝑎 +  𝑏 =  𝑜 𝑡ℎ𝑒𝑛 𝑎 =  𝑏)  

Problem: 
 

Show that 𝑅 =  { 𝑎 + 𝑏√2 ∶  𝑎, 𝑏 ∈  𝑄 } form a field with respect to addition and multiplication. 
 

Solution: Given R = { 𝑎 + 𝑏√2 ∶  𝑎, 𝑏 ∈  𝑄 } to show that R is field using Q is a 

field. 1.for all 𝑥 =  𝑎1 + 𝑏1√2     𝑦 =  𝑎2 + 𝑏2√2 in R then 

𝑥 +  𝑦 =  ( 𝑎1 + 𝑏1√2 )  + ( 𝑎2 + 𝑏2√2)  
 

= ( a1 + a2 )+ ( b1 + b2 ) √2 
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= a’ + b ′√2 ∈ R where a’ = ( a1 + a2 ) ,b’ = ( b1 + b2 ) ∈ Q 

x y = ( a1 +b1√2 )( a2 +b2√2) 

=( a1 a2 +2 b1 b2) + ( a1 b2 + b1 a2 ) √2 

= a’’ + b ′′√2 ∈ R where a’’ = ( a1 a2 +2 b1 b2) b’’ =( a1 b2 + b1 a2 ) ∈ Q  

Closure property holds w r t addition and multiplication 

 2.A) For all x = a +b√2 ∈ R there is an element 0 = 0 + 0√2 ∈ R ( ∵   0 ∈ Q ) Such that 

             x + 0 = ( a +b√2 ) + ( 0 + 0√2) = ( a+0 ) + ( b+0 ) √2  = ( a +b√2 ) = x 

                                                                                                                                     

     0 + x = ( 0 + 0√2) + ( a +b√2 )= ( 0+ a ) + ( 0+ b ) √2  = ( a +b√2 ) = x 

∴   0 = 0 + 0√2 ∈ R is the Identity wrt addition 

B) for all x= a +b√2 ∈ R there is an element 1 = 1 + 0√2 ∈ R ( ∵ 1, 0 ∈ Q ) 

Such that x .1 = ( a +b√2 )( 1 + 0√2) = ( a 1) + ( b+0 ) √2= ( a +b√2 ) = x                        

1. x = ( 1 + 0√2) ( a +b√2 )= ( 1.a ) + ( 0+ b ) √2 

= ( a +b√2 ) = x 

∴ 1 = 1 + 0√2 ∈ R is the Identity wrt Multiplication 

 
3.A) for all x = a + b√2 ∈ R there is an element – x = - a+ ( -b ) √2 ∈ R ( ∵ for all a ∈ Q ⇒ - a ∈ Q) 

Such that x + (-x) = ( a +b√2 ) + [-a + (-b)√2] = [ a + (-a ) ]+ [ b + (-b) ] √2 

= ( 0 + 0 √2 ) = 0 
 

(-x) + x = [−a + (−b ) √2] + ( a + b √2 )= [(-a) + a ) + [( -b) + b )√2] 
 

= ( 0 +0√2 ) = 0 

- x = -a+ (-b) √2 ∈ R is the inverse of x w r t addition 

B) for all x= a +b√2 ∈ R ∃ an element 

 x-1 = (a +b√2)-1  

 

= 1 × a−b√2 = a−b√2 = (a) 

a +b√2 a−b√2 𝑎2−2𝑏2 a2−2b2 

+ (−b) 

a2−2b2 
√2 ∈ R is the inverse 

 

element of x ∈ R since   a 
a2−2b2 

∈ 𝑄 𝑎𝑛𝑑 
(−b)

 
a2−2b2 

∈ 𝑄 
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4) As R contain all Real numbers but the set of all real numbers form a field and hence the remaining 

properties of the field are all exist in R 

ie Associative, Commutative and Distributive laws wrt addition and multiplication are exist. 

< R , +, . > is a field 
Problem: 

 

Show that R = { a +b√2 : a, b ∈ Z } form an Integral domain with respect to addition and 

multiplication. 

Solution: Given R = { a +b√2 : a, b ∈ Z } to show that R is an Integral domain using Z is Integral 

domain. 

1.A) for all x = a1 +b1√2 y = a2 +b2√2 in R then 

x + y = ( a1 +b1√2 ) + ( a2 +b2√2) 

= ( a1 + a2 )+ ( b1 + b2 ) √2 
 

= a’ + b ′√2 ∈ R where a’ = ( a1 + a2 ) ,b’ = ( b1 + b2 ) ∈ Z 

B) xy = ( a1 +b1√2 )( a2 +b2√2) 

= ( a1 a2 +2 b1 b2) + ( a1 b2 + b1 a2 ) √2 

= a’’ + b ′′√2 ∈ R where a’’ = ( a1 a2 +2 b1 b2), b’’ =( a1 b2 + b1 a2 ) ∈ Z 

Closure property holds wrt addition and multiplication 

2.A) For all x = a +b√2 ∈ R there is an element 0 = 0 + 0√2 ∈ R ( ∵   0 ∈ Z ) Such that 

x + 0 = ( a +b√2 ) + ( 0 + 0√2) = ( a+0 ) + ( b+0 ) √2 

= ( a +b√2 ) = x 
 

0 + x = ( 0 + 0√2) + ( a +b√2 )= ( 0+ a ) + ( 0+ b ) √2 
 

= ( a +b √2 ) = x 

∴ 0 = 0 + 0√2 ∈ R is the Identity wrt addition 

B) for all x= a +b√2 ∈ R there is an element 1 = 1 + 0√2 ∈ R ( ∵ 1, 0 ∈ Z ) Such that 

x .1 = ( a +b√2 )( 1 + 0√2) = ( a 1) + ( b+0 ) √2 

 

  = ( a +b√2 ) = x 
 

and 1. x = ( 1 + 0√2) ( a +b√2 ) = ( 1.a ) + ( 0+ b ) √2 
 

= ( a +b√2 ) = x 

 

∴ 1 = 1 + 0√2 ∈ R is the Identity wrt Multiplication. 

3.A) for all x = a + b√2 ∈ R there is an element – x = - a+ (-b)√2 ∈ R ( ∵ for all a ∈ Z ⇒ - a ∈ Z) 

Such that x + (-x) = ( a +b√2 ) + [-a + (-b)√2] = [ a + (-a ) ]+ [ b + (-b) ] √2 

 

= ( 0 + 0 √2 ) = 0 
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(-x) + x = [−a +  (−b)√2]  + ( a +b√2 )= [(-a)+ a ) + [( -b)+ b )√2] 
 

= ( 0 +0√2 ) = 0 

- x = -a+ (-b)√2 ∈ R is the inverse of x w r t addition 

 

B) Without zero divisors property: For all x = a1 +b1√2 y = a2 +b2√2 in R then 

if x y =0 

⇒(a1 +b1√2 )( a2 +b2√2) = 0 
 

⇒ ( a1 a2 +2 b1 b2) + ( a1 b2 + b1 a2 ) √2 = 0 +0 √2 

⇒ ( a1 a2 +2 b1 b2) = 0 and ( a1 b2 + b1 a2 ) = 0 . 

But a1 , a2 , b1 ,b2 are positive integers 

⇒    a1 a2 =0, b1 b2 = 0 

⇒    a1 =0 or a2 =0, b1=0 or b2 = 0  . 
 

⇒(a1 +b1√2 )= 0+0 √2, or  ( a2 +b2√2)= 0+0 √2 

⇒ x = 0 or y = 0. Without zero divisors property exist. 

 
 
 

4) As R contain all Real numbers but the set of all real numbers form an Integral domain and hence 

the remaining properties of the integral domain are all exist in R 

ie Associative, Commutative and Distributive laws wrt addition and multiplication are exist. 
 

                                  Therefore < R,+,.> is  an Integral domain. But it not a field  

Since for any 𝑥 = 3 + 4√2  ∈ 𝑅 𝑡ℎ𝑒𝑛 𝑥−1 =  
1

3+4√2
 ×

3−4√2

3−4√2
=

3−4√2

9−32
  

=  
3

−21
+

4

21
√2   ∉ 𝑅    ∵  

−3

21
 ,

4

21
 ∉ 𝑍     

 



                                                                                                                                       BSR MATHS GDC RVP 

Problem: 

Show that the set of Gaussian Integers 𝐽( 𝑖 )  =  { 𝑎 +  𝑖𝑏 ∶  𝑎, 𝑏 ∈  𝑍 } form an Integral domain 

with respect to addition and multiplication. 

Solution: Given 𝐽( 𝑖 )  =  { 𝑎 +  𝑖𝑏: 𝑎, 𝑏 ∈  𝑍 } to show that 𝐽( 𝑖 ) is an Integral domain using Z is 

Integral domain. 

1.A) for all x = a1 + I b1 , y = a2 + I b2 in 𝐽( 𝑖 ) 

then         x + y = ( a1 + ib1) + ( a2 + ib2) 

= ( a1 + a2 )+ i( b1 + b2 ) 

= a’ +i b ′ ∈ 𝐽( 𝑖 ) where a’ = ( a1 + a2 ) ,b’ = ( b1 + b2 ) ∈ Z 

B) x y=( a1 + ib1)( a2 + ib2) =( a1 a2 +2 b1 b2) + i( a1 b2 + b1 a2 ) 

= a’’ + ib ′′ ∈ J( i ) where a’’ = ( a1 a2 +2 b1 b2), b’’ =( a1 b2 + b1 a2 ) ∈ Z 

Closure property holds wrt addition and multiplication 

2.A) For all x = a + ib∈ J( i ) there is an element 0 = 0 + 0√2 ∈ J( i ) ( ∵ 0 ∈ Z ) Such that 

x + 0 = ( a + ib) + ( 0 + i0 ) = ( a+0 ) + i( b + 0 ) 

= ( a + ib ) = x 

0 + x = ( 0 + i0 )+ ( a + ib )= ( 0+ a ) + i( 0+ b ) 

= ( a + ib ) = x 

∴  0 =  0 +  𝑖0 ∈  𝐽( 𝑖 ) 𝑖𝑠 𝑡ℎ𝑒 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑤𝑟𝑡 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛  

B) For all x= a + ib ∈ J( i ) there is an element 1 = 1 + i0∈ J( i ) ( ∵ 1, 0 ∈ Z ) Such that 

x .1 = ( a + ib)( 1 + i0 ) = ( a 1) + i( b+0 ) 

= ( a + ib ) = x 

and 1. x = ( 1 + i0 ) ( a + ib ) = ( 1.a ) + i( 0+ b ) 

= ( a + ib ) = x 

∴  1 =  1 +  𝑖0 ∈  𝐽(𝑖) 𝑖𝑠 𝑡ℎ𝑒 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦( 𝑢𝑛𝑖𝑡𝑦) 𝑤𝑟𝑡 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛  

3.A) for all x = a + ib ∈ J( i ) there is an element – x = - a+ i(-b) ∈ J( i ) ( ∵ for all a ∈ Z ⇒ - a ∈ Z) 

𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 + (−𝑥)  =  ( 𝑎 +  𝑖𝑏)  +  [−𝑎 +  𝑖(−𝑏) ]  =  [ 𝑎 + (−𝑎 ) ] +  𝑖[ 𝑏 +  (−𝑏) ]  

       = ( 0 + i0 ) = 0 

(−𝑥)  +  𝑥 =  [−𝑎 +  𝑖(−𝑏)]  +  ( 𝑎 +  𝑖𝑏 ) =  [(−𝑎) +  𝑎 )  +  𝑖[( −𝑏) +  𝑏 ]   

=  ( 0 +  𝑖0 )  =  0   

− 𝑥 =  −𝑎 +  𝑖(−𝑏) ∈  𝐽( 𝑖 ) 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝑥 𝑤 𝑟 𝑡 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛  
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B) Without zero divisors property: For all x = a1 + ib1 y = a2 + ib2 in J( i ) then 

if x y =0 

⇒(a1 + ib1 )( a2 + ib2 ) = 0 

⇒ ( a1 a2 - b1 b2) + i ( a1 b2 + b1 a2 ) = 0 + i 0 

⇒ ( a1 a2 - b1 b2) = 0 and ( a1 b2 + b1 a2 ) = 0 .Squaring on both sides 

( a1 a2 - b1 b2 )2 = 0 and ( a1 b2 + b1 a2 )2 =0 Adding we get 

⇒ ( a1
2 a2

2 + b1
2 b2

2) + ( a1
2 b2 

2+ b1
2 a2

2 ) = 0 

⇒ ( a1
2 a2

2 + b1
2 b2

2) = 0 and ( a1
2 b2 

2+ b1
2 a2

2 ) = 0 𝐵𝑢𝑡 𝑎1 , 𝑎2 , 𝑏1 , 𝑏2 𝑎𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 

⇒   a1
2 a2

2 = 0, and b1
2 b2

2 = 0 

⇒   a1 = 0 or a2 = 0, b1= 0 or b2 = 0 . 

⇒ ( 𝑎1 +  𝑖𝑏1 )  =  0 +  𝑖0 , 𝑜𝑟 ( 𝑎2 +  𝑖𝑏2)  =  0 +  𝑖0⇒ x = 0 or y = 0. Without zero divisors property 
exist. 

 

4) As J(i) contain all Complex numbers but the set of all complex numbers form an Integral 

domain and hence the remaining properties of the integral domain are all exist in J(i) 

ie Associative, Commutative and Distributive laws wrt addition and multiplication are exist. 

 

< J(i) , +, . > is Integral domain . 

But It is not a field since for x = 2 + 3i ∈ J(i) then x -1 = 
1

 
2+3i 

 
 

2−3i 
× 

2−3i 

2−3i 2 
= =   

4+ 9    13 
− 

3   
√2 ∉ J(i) since 

2 

13 13 
∉ Z and 

3   
∉ Z 

13 
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Characteristic of a ring 

Definition: Let R is a ring a least positive integer n is said to be the characteristic of the ring if for all 

a ∈ R then 𝑎 + 𝑎 +  𝑎+ . . . 𝑛 𝑡𝑖𝑚𝑒𝑠 =  𝑛 𝑎 =  0 

Example: In the ring of additive modulo 6 

𝑍6 =  {0, 1, 2, 3, 4, 5} 

6(1)  = 0 , 6(2)  =  0 , 6(3)  = 0, 6(4)  = 0, 6(5)  =  0 

∴ The characteristic of Z6 is 6 

Theorem: Prove that the characteristic of an integral domain is either 0 or prime number. 

Proof: Suppose D is an Integral domain. 

For any a≠0 ∈ D and o(a) =0 then the characteristic of D is zero. 

If o(a) = p ≠ 0 where p is least positive integer then to show that p is prime number. 

Suppose p is not prime number ie it is composite number 

Let p = p1 p2 where 0 < p1 < p and 0 < p2 < p  

As a ≠ 0 ∈ D ⇒ a2 ≠ 0 ∈ D 

Also o(a) = p ⇒ o(a2) = p 

⇒ p (a2 ) = 0 

⇒ p1 p2 ( a a ) = 0 

⇒ ( p1 a ) ( p2 a) = 0 

⇒ ( p1 a ) = 0 or ( p2 a) = 0 

⇒ o(a) = p1    or o( a ) = p2    but 0 < p1 < p and 0 < p2 < p. 

But o(a) = p ≠ 0 where p is least positive integer. It is contradiction 

∴ The characteristic of R is prime. 
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        SUBRINGS 

Definition: A non-empty sub set S of a ring R is said to be a sub ring of R if S itself is 

a ring wrt addition and multiplication that is S satisfies all the properties (8 proprieties) of 

the ring R. 

Example: 1. The set of Even Integers 

2Z = {. . . . . .. -6, -4, -2,0,2,4,6,……. } and the multiples of 3 i.e. 

3Z = { . . . . . . . -9,-6,-3,0,3,6,9, .. ……..} etc are the subrings of Ring of Integers Z. 

Example: 2. The ring of Integers Z is a subring of ring of Rationales Q  

Theorem: (Necessary and sufficient condition for sub ring of a Ring) 

Statement: A non-empty subset S of a ring R to be a subring iff 

i) For all a, b ∊ S ⇒  a – b ∊ S 

ii) For all a, b ∊ S ⇒ a b ∊ S. 

Proof: ⇒ Part: Suppose S is a subring of the ring R 

i) For all a, b ∊ S ⇒ a ∊ S , b ∊ S ⇒ a ∊ S , - b ∊ S ( S is a sub ring) 

⇒ a + (-b) ∊ S  ( closure in S) 

⇒ a – b ∊ S 

ii) for all a, b ∊ S ⇒ a ∊ S, b ∊ S ⇒ ab ∊ S (closure wrt .) 

⇐ Part: Suppose Sis a non-empty sub set of ring R 

and i)For all a, b ∊ S ⇒ a – b ∊ S 

ii) For all a, b ∊ S ⇒ a b ∊ S. To show that S is a subring of R. 

 1.For all a ∊ S ⇒ a , a ∊ S ⇒ a – a ∊ S ( ∵ from)  

                  ⇒ 0 ∊ S       Additive Identity element exist in S. 

1. As 0 ∊ S For all b ∊ S ⇒ 0 – b ∊ S     (∵ from (i) ) 

                     ⇒ – b ∊ S  

                               Additive inverse exist . 

2. For all a, b ∊ S ⇒ a ∊ S , b ∊ S ⇒ a ∊ S , - b ∊ S ( ∵ from (A) ) 

⇒ a – (-b) ∊ S ( ∵ from (i) ) 

⇒ a + b ∊ S. 

                                            Closure w r t addition exist. 
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  3.From (ii) For all a, b ∊ S ⇒ a b ∊ S. Closure Property w r t multiplication exist. 

              As S ⊆ R the remaining properties of the ring are all exist in S.  

                                                                                                                                                                                       Hence S is a sub ring of R 

Theorem: 

Prove that the intersection of two subrings is a subring of the Ring R 

Proof: Let S1 and S2 are two subrings of the ring R. 

To show that S1 ∩ S2 is also subring of R . 

1) As S1 and S2 are two subrings of the ring R by Identity property 

0 ∈ S1 and 0 ∈ S2 ⇒ 0 ∈ S1 ∩ S2 

⇒ S1 ∩ S2 is non-empty sub set of R 

2) i) For all a , b ∈ S1 ∩ S2 ⇒ a – b ∈ S1 ∩ S2 

For all a , b ∈ S1 ∩ S2 ⇒ a , b ∈ S1 and a, b ∈ S2 

⇒ a - b ∈ S1 and a - b ∈ S2 ( since S1 and S2 are subrings of R ) 

⇒ a - b ∈ S1 ∩ S2 

ii)For all a, b ∈ S1 ∩ S2 ⇒ ab ∈ S1 ∩ S2 

For all a,b ∈ S1 ∩ S2 ⇒ a,b ∈ S1 and a,b ∈ S2 

But Let S1 and S2 are subrings of the ring R 

∴ ab ∈ S1 and ab ∈ S2 

⇒ a𝑏 ∈ S1 ∩ S2 

Hence S1 ∩ S2 is subring of R 
 

 
Theorem: Prove that the union of two subrings is a subring of a ring R if and only if one is contained 

in other. 

Proof: Let S1 and   S2 are two subrings of the ring R To prove that 

S1𝖴 S2 is a sub ring ⇔ S1 ⊆ S2 or S2 ⊆ S1 

<= Part Let S1 and S2 are two subrings of the ring R and S1 ⊆ S2 or S2 ⊆ S1 

To show that S1𝖴S2 subring 
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If S1 ⊆ S2    ⇒ S1𝖴S2 = S2 subring of R If S2 ⊆ S1 ⇒  S1𝖴S2 = S1 subring of R 
 

⇒ Part let S1 and S2 subrings and S1𝖴 S2 is a sub ring 

 

To show that S1 ⊆ S2      or S2 ⊆ S1 

If S1   ⊄ S2 ⇒  For all a ∈ S1   ⊄ S2    => a ∈ S1   but a∉ S2 ------- (1) 

If S2   ⊄ S1 ⇒   For b ∈ S2   ⊄ S1    => b ∈ S2   but b∉ S1----------- (2) 

a ∈ S1 b ∈ S2 ⇒ a, b ∈ S1𝖴S2 

But S1𝖴S2    is a subring ∴ a + b∊ S1𝖴 S2 

⇒ a + b ∊ S1 or a+ b ∊ S2 --------------------------------------- (3) 

From (1) and (3) a ∊ S1   a + b ∊ S1 ⇒ - a ∊ S1 (subring) a + b ∊ S1 

⇒ -a + (a + b ) ∊ S1 ( Closure property in S1 ) 

⇒ b∊ S1     I t is a contradiction to (2) 

From (2) and (3) b ∊ S2 a + b ∊ S2 ⇒- b ∊ S2 (subring) a + b ∊ S2 

⇒ -b + (a + b ) ∊ S2 ( Closure property in S2 ) 

⇒ a∊ S2     I t is a contradiction to (1) 

∴ S1 ⊆ S2 or S2 ⊆ S1       

 

Theorem: Prove that an arbitrary intersection of subrings of a ring R is a subring of the ring R. 

Proof: suppose S = { 𝑆𝑖 ∶ 𝑖 ∈ 𝐼 } is arbitrary collection of subrings of the ring R . 

To show that ⋂ 𝑆𝑖𝑖∈𝐼   is also a subring of R. 

1. ⋂ 𝑆𝑖𝑖∈𝐼  𝑖𝑠 𝑛𝑜𝑛 − 𝑒𝑚𝑡𝑦:  As  𝑆𝑖    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝐼  𝑖𝑠 𝑎 𝑠𝑢𝑏𝑟𝑖𝑛𝑔 𝑜𝑓 𝑅 

 

  by Identity property 0 ∈  Si   for all i ∈ I    

 

                                          ⇒ 0 ∈ ⋂ 𝑆𝑖𝑖∈𝐼      ⇒ ⋂ 𝑆𝑖𝑖∈𝐼 ≠ 𝜑 
 
2. For all a, b ∈ ⋂ Sii∈I    ⇒ 𝑎 −  𝑏 ∈ ⋂ Sii∈I   

 

As For all a, b ∈ ⋂ Sii∈I  ⇒ For all a, b ∈  Si   for all i ∈ I    

 

       As  𝑆𝑖    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝐼  𝑖𝑠 𝑎 𝑠𝑢𝑏𝑟𝑖𝑛𝑔 𝑜𝑓 𝑅 

    

               ⇒ 𝑎 −  𝑏 ∈ 𝑆𝑖    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝐼 

                              ⇒ 𝑎 −  𝑏 ∈ ⋂ Sii∈I . 

3. For all a, b ∈ ⋂ Sii∈I    ⇒ 𝑎 𝑏 ∈ ⋂ Sii∈I   

 

As For all a, b ∈ ⋂ Sii∈I  ⇒ For all a, b ∈  Si   for all i ∈ I    

 

       As  𝑆𝑖    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝐼  𝑖𝑠 𝑎 𝑠𝑢𝑏𝑟𝑖𝑛𝑔 𝑜𝑓 𝑅 
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               ⇒ 𝑎 𝑏 ∈ 𝑆𝑖    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝐼 

                              ⇒ 𝑎 𝑏 ∈ ⋂ Sii∈I . 

           Hence an arbitrary intersection of subrings of a ring R is a subring of the ring R 

 

 

IDEALS 
 

𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 ∶ (𝑅𝑖𝑔ℎ𝑡 𝐼𝑑𝑒𝑎𝑙)  

A non-empty sub set S of a ring R is said to be Right Ideal if it satisfies the following conditions 

1) For all a , b ∈ S ⇒ a – b ∈ S. 

2) For all r ∈ R, s ∈ S ⇒ s r ∈ S. 

𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 ∶ ( 𝐿𝑒𝑓𝑡 𝐼𝑑𝑒𝑎𝑙) 

A non-empty sub set S of a ring R is said to be Left Ideal if it satisfies the following conditions 

1) For all a , b ∈ S ⇒ a – b ∈ S. 

2) For all r ∈ R, s ∈ S ⇒ r s ∈ S . 

𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 ∶ ( 𝐼𝑑𝑒𝑎𝑙) 

A non-empty sub set S of a ring R is said to be an Ideal if it satisfies the following conditions 

1) For all a , b ∈ S ⇒ a – b ∈ S. 

2) For all r ∈ R, s ∈ S ⇒ r s ∈ S and s r ∈ S.  

          𝐸𝑥𝑎𝑚𝑝𝑙𝑒:  

𝑇ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑆 = 2𝑍 =  {. . . . . . −6, −4, −2,0,2,4,6, … … . . } 𝑖𝑠 𝑎𝑛  

𝐼𝑑𝑒𝑎𝑙 𝑜𝑓 𝑅𝑖𝑛𝑔 𝑜𝑓 𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑍 =  {. . . . . . . −4, −3, −2, −1,0,1,2,3,4, … … . }  

Since 1) for a = 4, b = 6 then a - b = 4 - 6 = -2 ∈ S 

2) for r = 5 ∈ R , s = 4 ∈ S then r s = 5 × 4 =20 ∈ S 

 

Note: The ring of integers Z is not an ideal of ring of Rationales Q. 

Since for r = 3/5 ∈ Q and s= 4 ∈ Z then s r = 4 .( 3/5) = 12/5 not in Z. 

𝑇ℎ𝑒𝑜𝑟𝑒𝑚:  

𝑃𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝐼𝑑𝑒𝑎𝑙𝑠 𝑖𝑠 𝑎𝑛 𝐼𝑑𝑒𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑅𝑖𝑛𝑔 𝑅 . 

Proof: Let S1 and S2 are two Ideals of the ring R. 

To show that S1 ∩ S2 is also an Ideal of R . 

1) As S1 and S2 are two Ideals of the ring R by Identity property 

0 ∈ S1 and 0 ∈ S2 ⇒ 0 ∈ S1 ∩ S2 

⇒ S1 ∩ S2 is non-empty sub set of R 
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1) For all a , b ∈ S1 ∩ S2 ⇒ a – b ∈ S1 ∩ S2 

For all a , b ∈ S1 ∩ S2 ⇒ a , b ∈ S1 and a, b ∈ S2 

⇒ a - b ∈ S1 and a - b ∈ S2 ( ∵ S1 and S2 are Ideals ) 

⇒ a - b ∈ S1 ∩ S2 

2) For all r ∈ R, s ∈ S1 ∩ S2 ⇒ r s ∈ S1 ∩ S2 and s r ∈ S1 ∩ S2 

For all r ∈ R, s ∈ S1 ∩ S2 ⇒ r ∈ R , s ∈ S1 and s ∈ S2 

But Let S1 and S2 are Ideals of the ring R 

∴ r s ∈ S1 and s r ∈ S1 and r s ∈ S2 and s r ∈ S2 

⇒ r s ∈ S1 ∩ S2 and s r ∈ S1 ∩ S2 

Hence S1 ∩ S2 is also an Ideal of R. 
 

𝑇ℎ𝑒𝑜𝑟𝑒𝑚:  

 𝑃𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑢𝑛𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝐼𝑑𝑒𝑎𝑙𝑠 𝑖𝑠 𝑎𝑛 𝐼𝑑𝑒𝑎𝑙 𝑜𝑓 𝑎 𝑟𝑖𝑛𝑔 𝑅 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓  

𝑜𝑛𝑒 𝑖𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 .  

Proof: Let S1 and S2 are two Ideals of the ring R To prove that      

S1𝖴 S2 is an Ideal ⇔ S1 ⊆ S2 or S2 ⊆ S1 

⇐  Part 

Let S1 and S2 are two ideals of the ring R and S1 ⊆ S2 or S2 ⊆ S1 

To show that S1𝖴S2 is an ideal of R 

If S1 ⊆ S2 ⇒ S1𝖴S2 = S2 ideal of R 

If S2 ⊆ S1 ⇒ S1𝖴S2 = S1 ideal of R 

∴ S1𝖴S2 is an Ideal of R 
 
⇒ Part 

let S1 and S2 ideals and S1𝖴 S2 is an ideal of R 

To show that S1 ⊆ S2 or S2 ⊆ S1 suppose S1 ⊄ S2 and S2 ⊄ S1 

If S1 ⊄ S2 ⇒ For all a ∈ S1 ⊄ S2 => a ∈ S1 but a∉ S2 ---- (1) 

If S2 ⊄ S1 ⇒ For b ∈ S2 ⊄ S1 => b ∈ S2 but b∉ S1    ----- (2) 

a ∈ S1 b ∈ S2 ⇒ a, b ∈ S1𝖴S2 

But S1𝖴S2 is an Ideal of R 

∴ a + b∊ S1𝖴 S2 
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⇒ a + b ∊ S1 or a+ b ∊ S2 --------(3) 

From (1) and (3) a ∊ S1 a + b ∊ S1 ⇒ - a ∊ S1 ( 𝐼𝑑𝑒𝑎𝑙 ) a + b ∊ S1 

⇒ -a + (a + b) ∊ S1 (Closure  property in S1) 

   ⇒ b∊ S1        I t is a contradiction to (2) 

 𝐹𝑟𝑜𝑚 (2) 𝑎𝑛𝑑 (3) 𝑏 ∊  𝑆2  𝑎 +  𝑏 ∊ 𝑆2  ⇒ − 𝑏 ∊ 𝑆2  (𝐼𝑑𝑒𝑎𝑙) 𝑎 +  𝑏 ∊ 𝑆2  

⇒ -b + (a + b) ∊ S2 (C losure  property in S2) 

⇒ a ∊ S2 I t is a contradiction to (1) 

∴ S1 ⊆ S2 or S2 ⊆ S1 

     
Result: Let S is an ideal of a ring R with unity then prove that if 1 ∈ S then prove that S = R. 

Proof : Given S is an ideal of a ring R with unity. 

Clearly   S ⊆ R ------ (1) 

To show that R ⊆ S 

For any r ∈ R given 1 ∈ S and S is an Ideal of R 

               ⇒ r 1 ∈ S ⇒ r ∈ S 

                   ⇒ R ⊆ S ------------(2) from (1) and (2)   R = S 

𝑇ℎ𝑒𝑜𝑟𝑒𝑚: 𝑃𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝑡 𝑒𝑣𝑒𝑟𝑦 𝑓𝑖𝑒𝑙𝑑 ℎ𝑎𝑠 𝑛𝑜 𝑝𝑟𝑜𝑝𝑒𝑟 𝑖𝑑𝑒𝑎𝑙𝑠.  

Proof: Suppose F is a field to show that the only ideals of F are { 0 } and F . 

Assume that S is an ideal of F and S ≠ { 0 } to show that S=F. 
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Clearly S ⊆ F ------(1) To show that F ⊆ S 

For any a ≠ 0 ∈ S ⊆ F ⇒ a ≠ 0 ∈ F and F is a a field 

⇒ a-1 ∈ F again a ∈ S and is ideal of R ⇒ a a-1 ∈ S 

⇒ 1 ∈ S and S is an Ideal of R for any r ∈ F 

⇒   r 1 ∈ S ⇒   r ∈ S ⇒   F ⊆ S ------------(2)              

from (1) and (2) F = S 

 

                                         All the best  


